Workload Generation for PubSub System - PowerPoint PPT Presentation

1 / 31
About This Presentation
Title:

Workload Generation for PubSub System

Description:

Subsamples or permutes the ordering of the requests to generate a new workload ... s absolution = adiabatic. i signify 21. i hourly = 89. T5, C0, U0. T5, C1, S0 ... – PowerPoint PPT presentation

Number of Views:43
Avg rating:3.0/5.0
Slides: 32
Provided by: yan122
Category:

less

Transcript and Presenter's Notes

Title: Workload Generation for PubSub System


1
Workload Generation for Pub/Sub System
  • Yanyan Wang
  • 11/25/2002

2
Agenda
  • Introduction
  • Related Works
  • Approach
  • Experiences
  • Conclusion Future Works

3
Motivation
  • Publish-Subscribe Infrastructure

4
A Benchmark Suite
  • A benchmark suite composed of three sections
  • Interface suitability
  • Applications
  • Synthetic Scenarios
  • Role of a synthetic workload generator
  • Generate inputs to system/simulator

5
Agenda
  • Introduction
  • Related Works
  • Approach
  • Experiences
  • Conclusion Future Works

6
Two Approaches
  • Trace-based approach
  • Starts with an empirical trace
  • Subsamples or permutes the ordering of the
    requests to generate a new workload different in
    some respect from the original.
  • Analytic approach
  • Uses mathematical models for the workload
    characteristics of interest
  • Uses random number generation to produce
    workloads that statistically conform to these
    models.

7
Analytic approach
  • Two types
  • Resource-oriented modeling approach
  • Capture the characteristic of the workload
    itself.
  • User behavior modeling approach
  • Capture the characteristic of the user behavior
  • In general be hierarchical
  • The sequence of user interactions at a higher
    level
  • Result in a stream of requests at a lower level

8
Resource-oriented modeling approach
  • ProWGen (Proxy Workload Generator)
  • Analytic approach
  • Parameters provide control over five key workload
    characteristics
  • Resource-oriented modeling approach does not
    model individual client behaviors, rather, models
    the aggregate workload as generated from many
    clients

9
User behavior modeling approach
  • SURGE (Scalable URL Reference Generator)
  • UE (User Equivalent) a single ON/OFF process
  • Probability distributions are used for each UE
  • BISANTE (Broadband Integrated Satellite Network
    Traffic Evaluations)
  • User Profiles a hierarchy of independent
    stochastic processes modeled by FSM to represent
    user behavior.
  • S-client
  • A single process and select system call to
    manage a large number of concurrent active
    connections to the server
  • Waspclient
  • Adapted from SURGE, excluding the user think time

10
User behavior modeling approach(Cont.)
  • SynRGen (Synthetic file Reference Generator)
  • User-Behavior modeling approach
  • Volume a subtree of files and directories
    exhibiting a unique combination of physical
    characteristics.
  • Preprocessed into a C data structure accessed by
    users
  • User classes a stochastic finite state machine
  • Configuration files describing user behavior
  • Preprocessed into a C program representing a
    synthetic user

11
Agenda
  • Introduction
  • Related Works
  • Approach
  • Experiences
  • Conclusion Future Works

12
Our Approach
  • Two Parts
  • Topology
  • Internet Topology Generator from GIT (includes
    mapping from servers to sites)
  • Map clients to sites
  • Application behavior
  • A process for each client user behavior modeling
    approach
  • Creating workloads by simulating clients using a
    generic discrete-event sequential simulator (a
    client can be understood as a program.)
  • program complex behaviors
  • program inter-related behaviors among clients
  • Parameters defined in configuration file to
    describe their behavior

13
Topology
Site
Client
Server
Client/Server
14
Topology File
  • C0_at_s77 -gt S_at_s79
  • C0_at_s77 -gt S_at_s82
  • C1_at_s29 -gt S_at_s0
  • C1_at_s29 -gt S_at_s30
  • C2_at_s47 -gt S_at_s43
  • C2_at_s47 -gt S_at_s45
  • C3_at_s15 -gt S_at_s11
  • C3_at_s15 -gt S_at_s12
  • C4_at_s80 -gt S_at_s2
  • C4_at_s80 -gt S_at_s84
  • C4_at_s80 -gt S_at_s85
  • C5_at_s42 -gt S_at_s43
  • C5_at_s42 -gt S_at_s45
  • C6_at_s4 -gt S_at_s0
  • C6_at_s4 -gt S_at_s7
  • C7_at_s59 -gt S_at_s60
  • C7_at_s59 -gt S_at_s63
  • S_at_s0
  • S_at_s2 -gt S_at_s0
  • S_at_s3 -gt S_at_s0
  • S_at_s4 -gt S_at_s0
  • S_at_s12 -gt S_at_s0
  • S_at_s17 -gt S_at_s0
  • S_at_s29 -gt S_at_s0
  • S_at_s69 -gt S_at_s2
  • S_at_s80 -gt S_at_s2
  • S_at_s88 -gt S_at_s2
  • S_at_s1 -gt S_at_s3
  • S_at_s95 -gt S_at_s3
  • S_at_s5 -gt S_at_s4
  • S_at_s7 -gt S_at_s4
  • S_at_s9 -gt S_at_s12
  • S_at_s10 -gt S_at_s12
  • S_at_s11 -gt S_at_s12

15
Simulator
  • Class Sim a generic discrete-event sequential
    simulator, maintains a time-ordered schedule of
    discrete events.
  • create_process(Process, char mode 0)
  • run_simulation(), stop_simulation()
  • set_timeout(Time)
  • signal_event(Event, ProcessId, Time)
  • Virtual class Process representing processes
    running within the simulator.
  • process_event(const Event msg)
  • process_timeout()
  • stop()

16
Simulation
create_process()
create_process()
create_process()
run_simulation()
set_timeout(T)
process_timeout() subscribe signal_event() set_
timeout(T)
process_event() subscribe signal_event()
process_event() subscribe
process_timeout() publish stop()
stop_simulation()
17
Contents of Sub/Pub
  • Sub Pattern Type Attr_Name Operator Value
  • Pub Pattern Type Attr_Name Value
  • Every part comes from weighted dictionaries
    (distribution)
  • Type from types.dist
  • Attr_Name from attr_names.dist
  • Operator from string_operators.dist for string,
    from operators.dist for other types
  • Value from int_values.dist for int, from
    str_values.dist for string

18
Parameters
  • Includes dictionary files as parameters.
  • Different parameters for different kinds of
    activities. E.g
  • For non-interactive activities
  • Type Random, Constant or Poisson
  • For Random Min, Max
  • For Constant Value
  • For Poisson Mid
  • For triggered activities modeled through
    simulator

19
Parameters (Content)
20
Parameters (Behavior)
21
Workload Generated
  • T3, C0, S0
  • s optics SF belch
  • i relocated 29
  • s panelist lt dismissing
  • i Massachusetts 85
  • i lilacs 80
  • T4, C2, S0
  • s absolution adiabatic
  • i signify gt 21
  • i hourly 89
  • T5, C0, U0
  • T5, C1, S0
  • s opposites gt epistemological
  • T5, C2, U0
  • T6, C7, S0
  • s pooling SF lender

T6, C0, N0 i hourly 22 i permanently 56 i
Bontempo 7 T6, C6, N0 s Muslims smuggle i
influenced 55 T7, C0, N1 i roping 6 i syllogisms
47 T7, C4, N0 s archdiocese belch b greengrocer
0 s wheels sates T9, C7, U0 T10, C1, U0
22
Agenda
  • Introduction
  • Related Works
  • Approach
  • Experiences
  • Conclusion Future Works

23
Formulate implement scenarios (Wave Scenario)
Film
4
2
Film News
2
3
2
Film News shopping
1
5
Film
shopping
5
2
3
News shopping
4
News shopping
6
2
shopping
7
24
Configuration File(1)
  • SUBJECT "News"
  • CONSTR_MIN 1
  • CONSTR_MAX 3
  • ATTR_MIN 2
  • ATTR_MAX 6
  • ATTR_DICT_F "attr_names.dict
  • TYPES_DIST_F "types.dist"
  • OP_DIST_F "operators.dist"
  • OP_STRING_DIST_F "string_operators.dist"
  • STR_DIST_F "str_values.dist"
  • INT_DIST_F "int_values.dist"
  • BOOL_DIST_F "bool_values.dist"

25
Configuration File(2)
  • CLIENT1
  • SUB_FRIENDS 20_at_2Film"News",
    30_at_5"News""Shopping"
  • SUBJECT_DICT_F "subject_names.dict"
  • SUBSCRIPTION 7
  • NOTIFICATION 3
  • FIRST 0
  • SUB_SERIAL_NUM 2
  • NOTIFY_SERIAL_NUM 1
  • SUB_NOTIFY_TIME 1
  • SUB_TIME 0
  • NOTIFY_TIME 0
  • UNSUB_TIME 2
  • 20_at_2Film News means client 2 will be
    triggered to subscribe on the subject Film and
    News after 2 seconds.

26
Simulation
subscribe
publish
Be triggered to sub/pub
signal_event
Time (s)
Client 1
Client 2
Client 3
Client 4
Client 5
Client 6
27
Application to Siena
Generate topology
Client 1
Script 1
Topology file
Server 1
Script Generator
Script Dispatcher
Script 2
Client 2
Script 3
Workload file
scripts for each clients
Server 2
Client 3
28
Agenda
  • Introduction
  • Related Works
  • Approach
  • Experiences
  • Conclusion Future Works

29
Conclusion
  • User behavior modeling approach
  • Two Parts
  • Topology generated by Internet Topology
    generator
  • Application Behavior
  • Every client is a program
  • Regular non-interrelated activity through
    analytic approach
  • Complex and interrelated activity through
    simulating
  • Defined by configuration file

30
Future Works
  • More reasonable workload content
  • Experiment on remote servers
  • Improvement of configuration file
  • Application to other systems
  • Validation with data from real life

31
Questions?
  • Happy ThanksGiving! ?
Write a Comment
User Comments (0)
About PowerShow.com