Title: Bab 8
1Bab 8 Momentum linear dan perlanggaran
Prinsip fizik asas pelancaran roket dan
pergerakannya ditentukan oleh keabadian momentum
linear.
2Major Concepts
- Momentum linear dan keabadianya
- Impulse dan mementum
- Perlanggaran dalam 1-D
- Perlanggaran dalam 2-D
- Pusat Jisim
- Gerakan sistem zarah-zarah
- Rocket Pulsulsion
3Mengapa momentum linear?
- Jasad-jasad berinteraksi di antara mereka melalui
berbagai jenis daya - Kesan-kesan interaksi tersebut mungkin amat
komplikated, melibatkan tabii daya, tempoh
interkasi, kedudukan jasad-jasad yang terlibat
(contoh bayangkan perlanggaran pin-bowling),
geometri sistem dsb. - Analisa and perihaln interaksi dalam sistem yang
komplikated melalui HN adalah kadang-kadang
mustahil - Jadi kita cari jalan lain yang lebih mudah dan
ekonomik - Guna konsep momentum linear dan keabadiannya
4Momentum linear
- Momentum linear suatu zarah atau objek yang
extended dalam dimensi yang boleh dimodelkan
sebagai suatu zarah dengan jisim m bergerak
dengan halaju v ditakrifkan sebagai hasildarab
jisimnya dengan halajunya - p m v
- Kita akan guna istilah momentum sebagai kata
ganti kepada momentum linear
m
v
v
m
?
5Momentum linear, samb
- ML ialah suatu kuantiti vektor, arahnya sama
dengan arah v - Dimensi ML/T
- Unit SI kg m / s
- Ia boleh dileraikan kepada komponen-komponennya
- px m vx py m vy
- pz m vz
y
p
py py
x
pz pz
px px
z
6Quick Quiz 9.1
Two objects have equal kinetic energies. How do
the magnitudes of their momenta compare? (a) p1 lt
p2 (b) p1 p2 (c) p1 gt p2 (d) not enough
information to tell
7Quick Quiz 9.1
Answer (d). Two identical objects (m1 m2)
traveling at the same speed (v1 v2) have the
same kinetic energies and the same magnitudes of
momentum. It also is possible, however, for
particular combinations of masses and velocities
to satisfy K1 K2 but not p1 p2. For example,
a 1-kg object moving at 2 m/s has the same
kinetic energy as a 4-kg object moving at 1 m/s,
but the two clearly do not have the same momenta.
Because we have no information about masses and
speeds, we cannot choose among (a), (b), or (c).
8Quick Quiz 9.2
Your physical education teacher throws a baseball
to you at a certain speed, and you catch it. Now
the teacher is going to throw you a medicine ball
whose mass is ten times the mass of the baseball.
You are given the following choices You can have
the medicine ball thrown with (a) the same speed
as the baseball, (b) the same momentum, (c) the
same kinetic energy. Rank these choices from
easiest to hardest to catch. (a) a, b, c (b) a,
c, b (c) b, c, a (d) b, a, c (e) c, a, b
9Quick Quiz 9.2
Answer (c) b, c, a. The slower the ball, the
easier it is to catch. If the momentum of the
medicine ball is the same as the momentum of the
baseball, the speed of the medicine ball must be
1/10 the speed of the baseball because the
medicine ball has 10 times the mass. If the
kinetic energies are the same, the speed of the
medicine ball must be the speed of the baseball
because of the squared speed term in the equation
for K. The medicine ball is hardest to catch when
it has the same speed as the baseball.
10Newton dan momentum
- HN 2 dapat digunakan untuk mengkaitkan momentum
suatu zarah dengan daya bersih yang bertindak
padanya - di mana jisim zarah adalah malar
- Interpretasi daya bersih F pada zarah
menyebabkan momentum zarah berubah dengan kadar
dp/dt
m
Fx
px berubah pada kadar Fx dpx/dt
11- Sebenarnya F dp/dt adalah bentuk asal Newton
membentangkan hukum keduanya - Bentuk HN2 ini adalah lebih umum daripada F ma
- Bentuk F dp/dt juga membenarkan kira perihalkan
dimamik zarah jika melibatkan jisim yang berubah - Ia terutamanya adalah amat powerful untuk
memerihalkan sistem zarah-zarah
12Quick quiz
- Mula-mulanya ia menghujan
- Kemudian hujan turun menjadi hail yang turun
pula - Katakan
- 1) kadar titik hujan mengena payung adalah sama
dengan kadar biji hail mengenai payung - 2) jisim titik hujan jisim biji hail,
- 3) kelajuan mereka kena permukaan payung juda
sama - Tanya adalah daya yang diperlukan untuk memegang
payung semasa hail sama, lebih besar atau kurang
berbanding dengan kes hujan?
13Jawapan
- Daya yang lebih besar dalam kes hail turun
- Kerana kadar perubahan momentum biji hail adalah
lebih kurang dua kali lebih besar daripda kes
untuk titui hujan - Mengapa kerana air hujan tidak melantun tapi
splatter and run off manakala biji hail akan
melantun ke atas yang bertentangan
14Keabadian momentum
- Bila-bila sahaja dua atau lebih zarahj dalam
sistem terpencil berinteraksi, jumlah momentum
sistem akan tetap malar (terabadikan) - Jumlah momentum sistem terabadi tidak bermakna
momentum individu mesti tak berubah - Ini juga mengimplikasikan bahawa jumlah momentum
sisterm terpencil bersamaan dengan nilai awal
jumlah momentumnya
15Keabadian momentum, samb.
- Boleh dibuktikan dengan HN3 dan HN2 bahawa jumlah
momentum suatu sistem terpencil adalah malar - Keabadian mementum dapat dinyatakan secara
matematik sebagai - ptotal p1 p2 pemalar, atau
- p1i p2i p1f p2f , atau
- ?pi ?pf
- Jumlah momentum komponen-komponen sistem
zarah-zarah juga mesti masing-masing terabadi
secara merdeka, iaitu - ?(pi)x ?(pf)x ?(pi)y ?(pf)y ?(pi) z
?(pf)z - Keabadian momentum boleh diaplikasikan ke atas
sistem yang mengandungi sebarang numbor zarah
16Terbitan kebabadian momentum
- Pertimbangkan sistem terpencil dua zarah yang
berinteraksi melalui Fij - Mengikut HN3, dua zarah yang berinteraksi untuk
suatu sela masa dt melalui daya Fij mestilah
mematuhi F12 - F21 - Mengikut HN2 pula,
- Pasangan daya tindakan-tindakbalas ini
menghasilkan pecutan pada zarah-zarah yang
ditindak oleh mereka masing-masing - m2a2 - m1a1
- m2 dv2/dt - m1dv1/dt
- m2 dv2/dt m1 dv1/dt 0
- d/dt (m2 v2 m1 v1) 0
- Tapi, mengikut definasi,
- (m2 v2 m1 v1) p2 p1
- Jadi kita sampai kepada
- d/dt (p2 p1) 0, atau p2 p1 pemalar
- sama sebelum dan selepas interaksi
17Quick Quiz 9.3
A ball is released and falls toward the ground
with no air resistance. The isolated system for
which momentum is conserved is (a) the ball (b)
the Earth (c) the ball and the Earth (d)
impossible to determine
18Quick Quiz 9.3
Answer (c). The ball and the Earth exert forces
on each other, so neither is an isolated system.
We must include both in the system so that the
interaction force is internal to the system.
19Quick Quiz 9.4
A car and a large truck traveling at the same
speed make a head-on collision and stick
together. Which vehicle experiences the larger
change in the magnitude of momentum? (a) the car
(b) the truck (c) The change in the magnitude
of momentum is the same for both. (d) impossible
to determine
20Quick Quiz 9.4
Answer (c). From Equation 9.4, if p1 p2
constant, then it follows that ?p1 ?p2 0 and
?p1 -?p2. While the change in momentum is the
same, the change in the velocity is a lot larger
for the car!
21Contoh keabadian momentum boleh diaplikasikan
- Pemanah berdiri di atas permukaan tanpa geseran
(ais) - Pendekatan
- Tak boleh guna HN2 kerana tiada maklumat F atau a
- Pendekatan tenaga? Tak, kerana tak ada maklumat
kerja atau tenaga - Tapi boleh guna meometum
22Contoh kiraan
- Pemanah berjisim 60 kg, berdiri di atas permukaan
tanpa geseran (ais) , memanah anak panah berjisim
0.5 kg secara mengufuk pada kelajuan 50 m/s.
Apalah halaju si pemanah bergerak selepas anak
panah dilepaskan?
23Penyelesaian
- Takrifkan sistem dulu
- Pemanah dengan bow (zarah 1) dan
- anak panah (zarah 2)
- Tiada daya luar dalam arah x, jadi ia sistem
terpencil untuk momentum dalam arah x - Jumlah momentum sebelum lepaskan anak panah 0
- Jumlah momentum selepas anak panah dilepaskan
ialah p1f p2f dan mesti sama dengan Jumlah
momentum sebelum lepaskan anak panah 0 p1f
p2f 0
24- m1v1f m2v2f 0
- Jadi, v1f -m2v2f / m1 - (0.5/60) 50 m/s
- - 0.42 m/s
- Iaitu pemanah bergerak dengan arah yang
bertentangan dengan arah anak pana - Halaju akhir pemanah juga lebih kecil kerana
jisimnya besar - Halaju pemanah ini dipanggil recoil velocity
25Apa kata jika
- Jika pemanah memanah pada arah yang buat suatu
sudut q dengan ufukan, bagaimanakah halaju
pemanah berubah? - Jawapan
- Recoil velocity pemanah akan berkurangan
magnitudnya kerana momentum komponen x anak panah
berkurangan dalam kes ini, menjadi - p2i ? (p2i )x p2f cosq
- (p1f )x - (p2f )x - p2f cosq
- m1 (v1f )x - m2 (v2f )x
- - m2 v2f cosq
- (v1f )x - m2 v2f cosq / m1
- banding dengan (v1f) x -m2v2f / m1
p2f
(P1f)x
(P2f)x
Keabadian momentum sistem dalam kes ini hanya
berlaku dalam arah-x saja arah-y ada daya luar
(N dan mg)
26Contoh keabadian momentum dalam Kaon
- Kaon reput kepada zarah-zarah p positif dan p
negatif - Momentum sebelum dan selepas adalah sifar
- Jadi, selepas reputan jumlah momentum akhir mesti
sama dengan sifar - p p- 0 atau p -p-
- Walaupun sistem ini amat berbeza dengan sistem
pemanah tadi, mereka mematuhi hukum fizik yang
sama keabadian momentum
27Impuls dan momentum
- Daya bersih menyebabkan perubahan momentum suatu
zarah - Aplikasikan HN2 keatas suatu zarah, F dp/dt
- Atau, dp Fdt
- Kamirkannya untuk mendapatkan perubahan dalam
momentum untuk suatu sela masa - Kamiran ini dikenali sebagai impuls, I, daya pada
objek tersebut untuk suatu sela Dt
28Teorem momentum-impuls
- Persamaan ini adalah teorem impuls-momentum
Impuls daya F yang bertindak pada suatu zarah
bersamaan dengan perubahan dalam momentum zarah
tersebut - Ini juga bentuk alternatif untuk HN2
29Nota tamhanan tentang Impuls
- Impuls kuantiti vektor
- Magnitud impuls sama dengan luas di bawah graf F
lawan t - Dimensi impuls ialah
- M L / T
- Impuls bukan sifat zarah tapi suatu ukuran
perubahan momentum zarah itu
30Impuls, terakhir
- Impulse juga boleh diwakili dengan daya min dalam
sela masa Dt - I Dt
- di mana luas bawah lengkung F lawan t bersamaan
dengan luas segiempat yang diberikan oleh daya
min untuk sela masa yang sama Dt - Daya min tersebut memberikan kesan impuls yang
sama kepada zarah dalam sela masa ini dengan
kesan daya impul yang berubah-masa
31Penghampiran impuls
- Dalam banyak kes, daya pada suatu zarah mungkin
lebih besar daripada daya-daya lain yang juga
bertindak pada zarah yang sama - Dalam penghampiran impuls kita sentiasa
menganggap daya impulse sentiasa lebih besar
daripada daya-daya lain yang juga bertindak pada
zarah pada ketika yang sama - Juga kita mengganggap bahawa anjakan zarah-zarah
semasa daya impulse bertindak adalah amat kecil
dan boleh diabaikan
32Contoh real life di mana penghampiran impuls
adalah benar
33Quick Quiz 9.5
Two objects are at rest on a frictionless
surface. Object 1 has a greater mass than object
2. When a constant force is applied to object 1,
it accelerates through a distance d. The force is
removed from object 1 and is applied to object 2.
At the moment when object 2 has accelerated
through the same distance d, which statements are
true? (a) p1 lt p2 (b) p1 p2 (c) p1 gt p2 (d)
K1 lt K2 (e) K1 K2 (f) K1 gt K2
34Quick Quiz 9.5
Answer (c) and (e). Object 2 has a greater
acceleration because of its smaller mass.
Therefore, it takes less time to travel the
distance d. Even though the force applied to
objects 1 and 2 is the same, the change in
momentum is less for object 2 because ?t is
smaller. The work W Fd done on both objects is
the same because both F and d are the same in the
two cases. Therefore, K1 K2.
35Quick Quiz 9.6
Two objects are at rest on a frictionless
surface. Object 1 has a greater mass than object
2. When a force is applied to object 1, it
accelerates for a time interval ?t. The force is
removed from object 1 and is applied to object 2.
After object 2 has accelerated for the same time
interval ?t, which statements are true? (a) p1 lt
p2 (b) p1 p2 (c) p1 gt p2 (d) K1 lt K2 (e) K1
K2 (f) K1 gt K2
36Quick Quiz 9.6
Answer (b) and (d). The same impulse is applied
to both objects, so they experience the same
change in momentum. Object 2 has a larger
acceleration due to its smaller mass. Thus, the
distance that object 2 covers in the time
interval ?t is larger than that for object 1. As
a result, more work is done on object 2 and K2 gt
K1.
37Quick Quiz 9.7a
Rank an automobile dashboard, seatbelt, and
airbag in terms of the impulse they deliver to a
front-seat passenger during a collision, from
greatest to least. (a) dashboard, seatbelt,
airbag (b) dashboard, airbag, seatbelt (c)
seatbelt, airbag, dashboard (d) seatbelt,
dashboard, airbag (e) airbag, dashboard,
seatbelt (f) airbag, seatbelt, dashboard (g) All
three are the same.
38Quick Quiz 9.7a
Answer (g). All three are the same. Because the
passenger is brought from the cars initial speed
to a full stop, the change in momentum (equal to
the impulse) is the same regardless of what stops
the passenger.
39Contoh impuls-momentum Kecelakaan jalanraya
- Dalam suatu Kecelakaan jalanraya, halaju awal
dan akhir sebuah kereta ialah - Soalan jika perlanggaran itu berlaku untuk sela
masa 0.15 s, tentukan impulse yang disebabkan
oleh perlanggaran itu kepada kereta, dan daya
impuls min yang bertindak kepadanya.
40Penyelesaian
- Anggapkan penghampiran impulse adalah benar
- Momentum awal,
- Maka impuls pada kerata
- Daya min
41Perlanggaran sifat-sifatnya
- Istilan perlanggaran merujuk kepada perkara
yang mana dua zarah mendekati sata sama lain and
berinteraksi melalui daya - Sela masa dalam mana perubahan halaju berlaku
dianggap pendek berbanding dengan skala (scale)
tompoh pencerapan/pengukuran eksperimen - Daya impuls adalah dianggap jauh lebih besar
berbanding dengan daya-daya luar yang bertindak
pada zarah (mislanya graviti, daya perintang
etc.) penghampiran impuls teraplikasikan
42Perlanggaran secara kontak terus
- Perlanggaran boleh jadi hasil daripada kontek
secara terus - Daya impuls mengkin berubah-masa dengan cara yang
amat komplikated - Daya impuls adalah daya dalam sistem
- misalnya perlanggaran billard ball-billard ball
Deformed ball hit
43Perlanggaran secara tidak berkontak (penyerakan)
- Perlanggaran tidak semestinya berkontak secara
fizikal di antara objek-objek - Kadang-kadang dikenali sebagai penyerakan
(scattering) - Dalam kes ini daya yang mengiteraksikan mesti
dapat bertindakan melalui ruang (misalnya daya
elektromagnetik, daya graviti) - Perlanggaran sedemikan masih boleh dianalisakan
sepertimana yang dilakukan ke atas sistem yang
berlanggar melalui kontak fizikal (tapi mungkin
lebih komplikated)
44Jenis-jenis perlanggaran
- Perlanggaran elastik momentum dan tenaga kinetik
terbabadikan - Perlanggaran elastik penuh berlaku pada skala
mikroskopik (misalnya penyerakan
elektron-elektron) - Dalam perlanggaran makroskopik hanya perlanggaran
elastik - Koefisien elastik, e 1 utk kes ini
- Perlanggaran tak elastik, KE tidak terabadi,
hanya momentum yang terabadi - Jika objek terlekat bersama selepas perlanggaran,
ia dikenali sebagai perlanggaran tak elastik
penuh - Koefisien elastik, e 0 utk kes ini
45Jenis-jenis perlanggaran, samb
- Dalam perlanggaran tak elastik, terdapat KE yang
terlesap (hilang), tapi objek tak lepat bersama - Perlanggaran elastik penuh dan perlanggaran tak
elastik penuh adalah kes-kes limit bagi
perlanggaran yang lebih umum - Kebanyakan perlanggaran tertelak di antara dua
jenis perlanggaran limit tersebut
46Mengapa mometum linear terabadi?
- Momentum sentiasa terabadi dalam mana-mana
perlanggaran - sebenarnya momentum adalah terabadi dalam semua
proses fizik yang pernah dicerap, tiada
pengecualian) - Teorem Noether (teorem matematik) mengatakan
setiap symmetri yang terabadi mesti bersepadanan
dengan suatu kuantiti - Wujud dalam alam semester kita simetri translasi
ruang (spatial translation - symmetry) hukum fizik pada x hukum fizik pada
kedudukan x. -
- ini merupakan punca kepada keabadian momentum
linear.
47Perlanggaran tak elastik penuh
- Oleh kerana objek terlekat bersama mereka
berkongsi halaju selepas perlanggaran (v2f v1f) - m1v1i m2v2i
- (m1 m2) vf
- Takrifkan koefisien perlanggaran
- e v2f v1f / (v1i v2i)
- e 0 untuk perlanggaran tak elastik penuh
Active fig.9.8.
48Contoh real life
- Kereta bertembang muka-dengan-muka adalah hampir
perlanggarangan tak elastik penuh
49Perlanggaran elastik
- Kedua-dua momentum dan KE terabadi
- koefisien perlanggaran
- e v2f v1f / (v1i v2i) 1 untuk
perlanggaran elastik penuh
Active fig.9.9.
50Perlanggaran elastik, samb
- Secara tipikal, ada dua unknown untuk
diselesaikan (misalnya halaju akhir bagi dua
objek yang terlibat) - Kedua-dua unknow in dapat diselesaikan kerana
kita ada dua persamaan yang merdeka daripada satu
sama lain (K. mom dan K. KE) - Persamaan kinetik mungkin susah diselesaikan
kerana melibatkan kuasadua halaju - Sebagai alternatif yang lebih mudah dalam
menyelesaikan persamaan serentak K. mom dan K.
KE, kita boleh guna persamaan alternatif yang
lebih mudah untuk menggantikan persamaan K. KE
dangan v2f v1f v1i v2i - yang diperolehi daripada e v2f v1f / (v1i
v2i) 1 - Hanya boleh digunakan ke atas kes perlanggaran
elastik penuh dua jasad dalam 1-D
51algebra
- Nak tunjukkan terbitan
- v2f v1f v1i v2i
52Elastic Collisions, final
- Example of some special cases
- m1 m2 the particles exchange velocities
- When a very heavy particle collides head-on with
a very light one initially at rest, the heavy
particle continues in motion unaltered and the
light particle rebounds with a speed of about
twice the initial speed of the heavy particle - When a very light particle collides head-on with
a very heavy particle initially at rest, the
light particle has its velocity reversed and the
heavy particle remains approximately at rest
53To find fig. 8.18 of billard ball, Young
54Contoh 9.5, Fig. 9.10, pg. 263
55Quick Quiz 9.8
In a perfectly inelastic one-dimensional
collision between two objects, what condition
alone is necessary so that all of the original
kinetic energy of the system is gone after the
collision? (a) The objects must have momenta
with the same magnitude but opposite directions.
(b) The objects must have the same mass. (c)
The objects must have the same velocity. (d) The
objects must have the same speed, with velocity
vectors in opposite directions
56Quick Quiz 9.8
Answer (a). If all of the initial kinetic energy
is transformed, then nothing is moving after the
collision. Consequently, the final momentum of
the system is necessarily zero and, therefore,
the initial momentum of the system must be zero.
While (b) and (d) together would satisfy the
conditions, neither one alone does.
57Quick Quiz 9.9
A table-tennis ball is thrown at a stationary
bowling ball. The table-tennis ball makes a
one-dimensional elastic collision and bounces
back along the same line. After the collision,
compared to the bowling ball, the table-tennis
ball has (a) a larger magnitude of momentum and
more kinetic energy (b) a smaller magnitude of
momentum and more kinetic energy (c) a larger
magnitude of momentum and less kinetic energy
(d) a smaller magnitude of momentum and less
kinetic energy (e) the same magnitude of
momentum and the same kinetic energy
58Quick Quiz 9.9
Answer (b). Because momentum of the two-ball
system is conserved, pTi 0 pTf pB. Because
the table-tennis ball bounces back from the much
more massive bowling ball with approximately the
same speed, pTf -pTi. As a consequence, pB
2pTi. Kinetic energy can be expressed as K p2 /
2m. Because of the much larger mass of the
bowling ball, its kinetic energy is much smaller
than that of the table-tennis ball.
59Collision Example Ballistic Pendulum
- Perfectly inelastic collision the bullet is
embedded in the block of wood - Momentum equation will have two unknowns
- Use conservation of energy from the pendulum to
find the velocity just after the collision - Then you can find the speed of the bullet
60Ballistic Pendulum, cont
- A multi-flash photograph of a ballistic pendulum
61Contoh 9.7, pg. 264
62Contoh 9.8
63Penyelesaian
64Example 8.12, YoungGravitatinal slingshot effect
65Two-Dimensional Collisions
- The momentum is conserved in all directions
- Use subscripts for
- identifying the object
- indicating initial or final values
- the velocity components
- If the collision is elastic, use conservation of
kinetic energy as a second equation - Remember, the simpler equation can only be used
for one-dimensional situations
66Two-Dimensional Collision, example
- Particle 1 is moving at velocity v1i and particle
2 is at rest - In the x-direction, the initial momentum is m1v1i
- In the y-direction, the initial momentum is 0
67Two-Dimensional Collision, example cont
- After the collision, the momentum in the
x-direction is m1v1f cos q m2v2f cos f - After the collision, the momentum in the
y-direction is m1v1f sin q m2v2f sin f
Active Figure 9.13
68Problem-Solving Strategies Two-Dimensional
Collisions
- Set up a coordinate system and define your
velocities with respect to that system - It is usually convenient to have the x-axis
coincide with one of the initial velocities - In your sketch of the coordinate system, draw and
label all velocity vectors and include all the
given information
69Problem-Solving Strategies Two-Dimensional
Collisions, 2
- Write expressions for the x- and y-components of
the momentum of each object before and after the
collision - Remember to include the appropriate signs for the
components of the velocity vectors - Write expressions for the total momentum of the
system in the x-direction before and after the
collision and equate the two. Repeat for the
total momentum in the y-direction.
70Problem-Solving Strategies Two-Dimensional
Collisions, 3
- If the collision is inelastic, kinetic energy of
the system is not conserved, and additional
information is probably needed - If the collision is perfectly inelastic, the
final velocities of the two objects are equal.
Solve the momentum equations for the unknowns.
71Problem-Solving Strategies Two-Dimensional
Collisions, 4
- If the collision is elastic, the kinetic energy
of the system is conserved - Equate the total kinetic energy before the
collision to the total kinetic energy after the
collision to obtain more information on the
relationship between the velocities
72Two-Dimensional Collision Example
- Before the collision, the car has the total
momentum in the x-direction and the van has the
total momentum in the y-direction - After the collision, both have x- and y-components
Youngs Applet, 6.5 car collision
73Contoh 9.10
74Contoh 9.11, Perlanggaran proton-proton
- Find figures of proton crash with proton
75The Center of Mass
- There is a special point in a system or object,
called the center of mass, that moves as if all
of the mass of the system is concentrated at that
point - The system will move as if an external force were
applied to a single particle of mass M located at
the center of mass - M is the total mass of the system
76Ilustrasi C.M. dalam kes benar
77Center of Mass, Coordinates
- The coordinates of the center of mass are
- where M is the total mass of the system
78Center of Mass, position
- The center of mass can be located by its position
vector, rCM - ri is the position of the i th particle, defined
by
79Active Figure 9.16
80Center of Mass, Example
- Both masses are on the x-axis
- The center of mass is on the x-axis
- The center of mass is closer to the particle with
the larger mass
Active Figure 9.17
81Center of Mass, Extended Object
- Think of the extended object as a system
containing a large number of particles - The particle distribution is small, so the mass
can be considered a continuous mass distribution
82Center of Mass, Extended Object, Coordinates
- The coordinates of the center of mass of the
object are
83Center of Mass, Extended Object, Position
- The position of the center of mass can also be
found by - The center of mass of any symmetrical object lies
on an axis of symmetry and on any plane of
symmetry
84Center of Mass, Example
- An extended object can be considered a
distribution of small mass elements, Dm - The center of mass is located at position rCM
85Fig. 9.19
86Quick Quiz 9.10
A baseball bat is cut at the location of its
center of mass as shown in the figure. The piece
with the smaller mass is (a) the piece on the
right (b) the piece on the left (c) Both pieces
have the same mass. (d) impossible to determine
87Quick Quiz 9.10
Answer (b). The piece with the handle will have
less mass than the piece made up of the end of
the bat. To see why this is so, take the origin
of coordinates as the center of mass before the
bat was cut. Replace each cut piece by a small
sphere located at the center of mass for each
piece. The sphere representing the handle piece
is farther from the origin, but the product of
less mass and greater distance balances the
product of greater mass and less distance for the
end piece
88Contoh 8.14, Young
89Center of Mass, Rod
- Find the center of mass of a rod of mass M and
length L - The location is on the x-axis (or
- yCM zCM 0)
- xCM L / 2
90Contoh 9.14
91Motion of a System of Particles
- Assume the total mass, M, of the system remains
constant - We can describe the motion of the system in terms
of the velocity and acceleration of the center of
mass of the system - We can also describe the momentum of the system
and Newtons Second Law for the system
92Velocity and Momentum of a System of Particles
- The velocity of the center of mass of a system of
particles is - The momentum can be expressed as
- The total linear momentum of the system equals
the total mass multiplied by the velocity of the
center of mass
93Acceleration of the Center of Mass
- The acceleration of the center of mass can be
found by differentiating the velocity with
respect to time
94Forces In a System of Particles
- The acceleration can be related to a force
- If we sum over all the internal forces, they
cancel in pairs and the net force on the system
is caused only by the external forces
95Newtons Second Law for a System of Particles
- Since the only forces are external, the net
external force equals the total mass of the
system multiplied by the acceleration of the
center of mass - SFext M aCM
- The center of mass of a system of particles of
combined mass M moves like an equivalent particle
of mass M would move under the influence of the
net external force on the system
96Momentum of a System of Particles
- The total linear momentum of a system of
particles is conserved if no net external force
is acting on the system - MvCM ptot constant when SFext 0
97C.M. roket yang letup
- Sebelum letupan, roket mengikut lintasan
projektil - Bagi roket yang telah letup, C.M.
serpihan-serpihan tetap mengikut lintasan
parabola sebagaimana dalam kes projektil untuk
suatu objek yang masih bersepadu - Lintasan projektil kerana ada daya luar graviti
- yang bertindak dalam arah cancangan. - Di sini, SFext M aCM ? Fg M g
98Pembatalan daya letupan daya dalam tiada
sumbangan dalam SFext
- Tapi, daya letupan bukanlah daya luar
- Atau dalam kata lain daya-daya letupan
membatalkan satu sama lain dan sumbangan bersih
mereka kepada Sfext ialah sifar - Jadi ia tidak akan mempengaruhi gerakan C.M.
sistem serpihan semasa dan selepas letupan
99Quick Quiz 9.11
The vacationers on a cruise ship are eager to
arrive at their next destination. They decide to
try to speed up the cruise ship by gathering at
the bow (the front) and running all at once
toward the stern (the back) of the ship. While
they are running toward the stern, the speed of
the ship is (a) higher than it was before (b)
unchanged (c) lower than it was before (d)
impossible to determine
100Quick Quiz 9.11
Answer (a). This is the same effect as the
swimmer diving off the raft that we just
discussed. The vessel-passengers system is
isolated. If the passengers all start running one
way, the speed of the vessel increases (a small
amount!) the other way.
101Quick Quiz 9.12
The vacationers in question 11 stop running when
they reach the stern of the ship. After they have
all stopped running, the speed of the ship is
(a) higher than it was before they started
running (b) unchanged from what it was before
they started running (c) lower than it was
before they started running (d) impossible to
determine
102Quick Quiz 9.12
Answer (b). Once they stop running, the momentum
of the system is the same as it was before they
started running you cannot change the momentum
of an isolated system by means of internal
forces. In case you are thinking that the
passengers could do this over and over to take
advantage of the speed increase while they are
running, remember that they will slow the ship
down every time they return to the bow!
103Motion of the Center of Mass, Example
- A projectile is fired into the air and suddenly
explodes - With no explosion, the projectile would follow
the dotted line - After the explosion, the center of mass of the
fragments still follows the dotted line, the same
parabolic path the projectile would have
followed with no explosion
104Contoh 9.17
105Conceptual example 9.16
106Rocket Propulsion
- The operation of a rocket depends upon the law of
conservation of linear momentum as applied to a
system of particles, where the system is the
rocket plus its ejected fuel
107Fig. 9.27
108Rocket Propulsion, 2
- The initial mass of the rocket plus all its fuel
is M Dm at time ti and velocity v - The initial momentum of the system is pi (M
Dm) v
109Rocket Propulsion, 3
- At some time t Dt, the rockets mass has been
reduced to M and an amount of fuel, Dm has been
ejected - The rockets speed has increased by Dv
110Rocket Propulsion, 4
- Because the gases are given some momentum when
they are ejected out of the engine, the rocket
receives a compensating momentum in the opposite
direction - Therefore, the rocket is accelerated as a result
of the push from the exhaust gases - In free space, the center of mass of the system
(rocket plus expelled gases) moves uniformly,
independent of the propulsion process
111Rocket Propulsion, 5
- The basic equation for rocket propulsion is
- The increase in rocket speed is proportional to
the speed of the escape gases (ve) - So, the exhaust speed should be very high
- The increase in rocket speed is also proportional
to the natural log of the ratio Mi/Mf - So, the ratio should be as high as possible,
meaning the mass of the rocket should be as small
as possible and it should carry as much fuel as
possible
112Thrust
- The thrust on the rocket is the force exerted on
it by the ejected exhaust gases - Thrust
- The thrust increases as the exhaust speed
increases - The thrust increases as the rate of change of
mass increases - The rate of change of the mass is called the burn
rate
113Fig. 8.28 Young
114(No Transcript)
115Contoh 9.19
116Contoh 8.16 Young
117Quick quiz
- Pg. 313 Young, Test your understanding
118buatlah soalan-soalan tutorial untuk latihan dan
kefahaman