Bab 3 - PowerPoint PPT Presentation

About This Presentation
Title:

Bab 3

Description:

Bab 3 Filsafat dan Ilmu dalam Sejarah Orientasi Sejarah Hubungan Sejarah Filsafat dan ilmu di dalam filsafat ilmu berhubungan dengan sejarah barat Berpusat di Eropa ... – PowerPoint PPT presentation

Number of Views:618
Avg rating:3.0/5.0
Slides: 107
Provided by: muhlisFil
Category:
Tags: bab | easter

less

Transcript and Presenter's Notes

Title: Bab 3


1
Bab 3
  • Filsafat dan Ilmu dalam Sejarah

2
Orientasi Sejarah
  • Hubungan Sejarah
  • Filsafat dan ilmu di dalam filsafat ilmu
    berhubungan dengan sejarah barat
  • Berpusat di Eropa, terutama Eropa Barat
  • Pembabakan Sejarah
  • Sejarah dibagi ke dalam sejumlah babak, dari
    zaman dahulu sampai sekarang
  • Pembabakan sejarah mengikuti pembabakan yang
    lazim di sejarah Eropa
  • Filsafat dan Ilmu
  • Di dalam sejarah ini, filsafat dan ilmu tidak
    diuraikan secara terpisah

3
Pembabakan Zaman
  • Zaman Kuno
  • sebelum abad ke-5 sM
  • Zaman Yunani Kuno
  • abad ke-5 sM sampai abad ke-1 sM
  • Zaman Romawi
  • abad ke-1 sM sampai abad ke-5
  • Zaman Gelap (Dark Ages)
  • abad ke-5 sampai abad ke-10
  • Zaman Pertengahan (Medieval)
  • abad ke-10 sampai abad ke-15
  • Zaman Kebangkitan (Rennaissance)
  • abad ke-15 sampai abad ke-18
  • Zaman Modern
  • abad ke-18 sampai sekarang

4
Zaman KunoSebelum Abad ke-5 sM
  • Keteraturan Alam (Louis de Broglie)
  • Gembala Chaldea di Mesopotamia memperhatikan
    gejala di langit terutama di malam hari
  • Gerak benda langit teratur sehingga mereka yakin
    akan keteraturan alam
  • Muncul pengetahuan astronomi termasuk kalender
    bulan dan muncul ilmu
  • Mereka juga mengenal musim, sehingga satu tahun
    terdiri atas 12 bulan (tidak tepat)
  • Keteraturan Alam (Dennis Gabor)
  • Manusia percaya bahwa ada keteraturan pada dasar
    gelaja alam
  • Keteraturan ini layak dinyatakan melalui logika
  • Kepercayaan ini melahirkan ilmu

5
  • THE HISTORY OF SCIENCE
  • On the simplest level, science is knowledge
    of the world of nature. There are many
    regularities in nature that mankind has had to
    recognize for survival since the emergence of
    Homo Sapiens as a species. The Sun and the Moon
    periodically repeat their movements. Some
    motions, like the daily motions of the Sun, are
    simple to observe others, like the annual
    motion of the Sun, are far more difficult. Both
    motions correlate with important terrestial
    events. Day and night provide the basic rhythm of
    human existence the seasons determine the
    migration of animals upon which human depended
    for millennia for survival. With the invention of
    agriculture, the seasons became even more
    crucial, for failure to recognize the proper time
    for planting could lead to starvation. Science
    defined simply as knowledge of natural processes
    is universal among mankind, and it has existed
    since the dawn of human existence.
  • The mere recognition of regularities does
    not exhaust the full meaning, however. In the
    first place, regularities may be simply
    constructs of the human mind. Humans leap to
    conclusions the mind cannot tolerate chaos, so
    it constructs regularities even when none
    objectively exists. Thus, for example, one of the

6
  • astronomical laws of the Middle Ages was that
    the appearance of comets presaged a great
    upheaval, as the Norman Conquest of Britain
    followed the comet of 1066. True regularities
    must be established by detached examinations of
    data. Science, therefore, must employ a certain
    degree of skepticism to prevent premature
    generalization.
  • Regularities, even when expressed
    mathematically as laws of nature, are not fully
    satisfactory to everyone. Some insist that
    genuine understanding demand explanations of the
    causes of the laws, but it is in the realm of
    causation that there is the greatest
    disagreement. Modern quantum mechanics, for
    example, has given up the quest for causation and
    today rests only on mathematical expression .
    Modern biology, on the other hand, thrives on
    causal chains that permit the understanding of
    physiological and evolutionary processes in terms
    of the physical activities of entities such as
    molecules, cells, and organism. But even if
    causation and explanation are admitted as
    necessary, there is little argument on the kinds
    of causes that are permissible, or possible in
    science. If the history of science is to make any
    sense whatsoever it is necessary to deal with the
    past on its own terms, and the fact in that for
    most of the history of science natural
    philosophers appealed to causes that

7
  • would be summarily rejected by modern scientists.
    Spiritual and divine forces were accepted as both
    real and necessary until the end of 18th century
    and, in areas such as biology, deep into the 19th
    century as well.
  • Certain conventions governed the appeal to
    God or the gods or the spirits, it was held,
    could not be completely arbitrary in their
    actions otherwise the proper response would be
    propitiation, not rational investigation. But
    since the deity or deities were themselves
    rational, or bound by rational principles, it was
    possible for humans to uncover the rational order
    of the world. Faith in the world could actually
    stimulate original scientific work. Keplers
    laws, Newtons absolute space, and Einsteins
    rejection of the probabilistic nature of quantum
    mechanics were all based on theological, not
    scientific, assumptions. For sensitive
    interpreters of phenomena, the ultimate
    intelligibility of nature has seemed to demand
    some rational guiding spirit. A notable
    expression on this idea is Einsteins statement
    that the wonder is not that mankind comprehends
    the world, but that the world is comprehensible.
  • Science, then is to be considered in this
    article as knowledge of natural regularities that
    is subjected to some degree of skeptical vigour
    and explained by rati-

8
  • onal causes. One final caution is necessary.
    Nature is known only through the senses, of which
    sight, touch, and hearing are the dominant ones,
    and the human notion of reality is skewed toward
    objects of these senses. The invention of such
    instruments as the telescope, the microscope, and
    the Geiger counter has brought an ever-increasing
    range of phenomena with the scope of the senses.
    Thus, scientific knowledge of the world is only
    partial, and progress of science follows the
    ability of humans to make phenomena perceivable.

9
Zaman KunoSebelum Abad ke-5 sM
  • Keteraturan Alam (di Mesir Kuno)
  • Sungai Nil banjir setiap tahun secara teratur
    menghapus batas tanah sehingga lahir ilmu ukur
    untuk menemukan kembali batas itu
  • Ilmu ukur digunakan juga untuk membuat piramida
  • Secara teratur, gerak naik bintang sothis
    (sirius) sinkron dengan siklus banjir sungai Nil,
    dan berlangsung setahun sekali
  • Muncul pengetahuan astronomi dan kalender
    matahari di samping kalender bulan
  • Keteraturan Alam (di Yunani Kuno)
  • Pengetahuan dari Mesopotamia dan Mesir Kuno masuk
    ke Yunani Kuno

10
Zaman KunoSebelum Abad ke-5 sM
  • Keteraturan Alam (di Romawi Kuno)
  • Sebelum Romawi menjadi negara adikuasa (abad
    ke-1 sM), mereka juga menerima kalender dari
    Yunani Kuno
  • Romawi menyusun kalender matahari yang
    berubah-ubah yang kemudian distandardisasi oleh
    Julius Ceaser
  • Kalender inilah yang kemudian menjadi kalender
    internasional yang kita pergunakan sekarang
    (disempurnakan oleh Paus Gregorius)
  • Keteraturan Alam (Kalender)
  • Salah satu pengetahuan astronomi (mungkin tertua)
    yang dilahirkan oleh keteraturan alam adalah
    kalender
  • Di samping astronomi, muncul pula pengetahuan
    lain yang dikenal sebagai astrologi

11
  • LUNAR CALENDAR
  • Any dating system based on a year consisting of
    synodic monthsi.e. complete cycles of phases of
    the Moon. In every solar year (or year of the
    seasons), there are about 12.37 synodic months.
    Therefore, if a lunar-year calendar is to be kept
    in step with the seasonal year, a periodic
    intercalation (addition) of days is necessary.
  • The Sumerians were probably the first to develop
    a calendar based entirely on the recurrence of
    lunar phases. Each Sumero-Babylonian month began
    on the first day of visibility of the new Moon.
    Although an intercalary month was used
    periodically, intercalations were haphazard,
    inserted when the royal astrologers realized that
    the calendar had fallen severely out of step with
    the seasons. Starting about 380 BC, however,
    fixed rules regarding intercalations were
    established, providing for the distribution of
    seven intercalary months at designated intervals
    over 19-year periods. Greek astronomers also
    devised rules for intercalations to coordinate
    the lunar and solar years. It is likely that the
    Roman republican calendar was based on the lunar
    calendar of the Greeks.

12
  • Lunar calendars remain in use among certain
    religious groups today. The Jewish calendar,
    which supposedly dates from 3,760 and three
    months before the Christian Era (BCE) is one
    example. The Jewish religious year begins in
    autumn and consists of 12 months alternating
    between 30 and 29 days. It allows for a periodic
    leap year and an intercalary month. Another lunar
    calendar, the Muslim, dates from the HegiraJuly
    15, AD 622, the day on which sthe prophet
    Muhammad began his migration from Mecca to
    Medina. It makes no effort to keep calendric and
    seasonal years together.
  • SOLAR CALENDAR
  • Any dating system based on the seasonal year of
    approximately 365¼ days, the time it takes the
    earth to revolve once around the Sun. The
    Egyptians appear to have been the first to
    develop a solar calendar, using as a fixed point
    the annual sunrise reappearance of the Dog
    StarSirius, or Sothis--in the eastern sky, which
    coincided with the annual flooding of the Nile.
    They constructed a calendar of 365 days,
    consisting of 12

13
  • months of 30 days each, with a 5 days added at
    the years end. The Egyptians failure to account
    for the extra fraction of a day, however, caused
    their calendar to drift gradually into error.
  • Ptolemy III Euergetes of Egypt, in the Decree of
    Canopus (237 BC), introduced an extra day every
    four years to the basic 365-day calendar (this
    practice also having been introduced in the
    Seleucid calendar adopted in 312 BC). In the
    Roman Republic, Julius Ceaser in 45 BC replaced
    the confused Roman Republican calendar. Which
    probably was based on the lunar calendar of the
    Greeks, with the Julian calendar. The Julian
    calendar assigned 30 or 31 days to 11 months but
    fewer to February it allowed for a leap year
    every four years. The Julian calendar, however,
    made the solar year slightly too long by adding a
    full quarter of day annuallythe solar year
    actually runs 365.2422 days. By mid-16th century
    the extra time had resulted in an accumulated
    error of about 10 days. To correct this error,
    Pope Gregory XIII instituted the Gregorian
    calendar in 1582, dropping October 5-14 that year
    and omitting leap years when they fell on
    centurial years not divisible by 400e.g., 1700,
    1800, 1900.

14
  • Penanggalan Romawi mula-mula hanya 10 bulan, dari
    Martius sampai December. Oleh kaisar Romawi ke-2,
    ditambah 2 bulan pada musim dingin sehingga
    menjadi
  • Martius
  • Aprilis
  • Maius
  • Junius
  • Quintilis (Julius)
  • Sextilis (Augustus)
  • September
  • October
  • November
  • December
  • Januarius
  • Februarius
  • Karena ada upacara pada bulan Januarius, maka
    kemudian awal tahun digeser ke Januarius

15
  • Pada tahun ke-45 sebelum Masehi, penanggalan
    Romawai cukup kacau. Julius Ceaser minta
    Sosigenes membenahi kalender.
  • Dasar pembenahan adalah 365 ¼ hari setahun
    sehingga setahun 365 hari dan interkalasi 4 tahun
    sekali dengan 366 hari. Dimulai tahun 44 sebelum
    Masehi sehingga tahun 45 sM menjadi 400 hari
    lebih.
  • Senat menghormati Julius Ceaser dan mengganti
    Quintilis menjadi Julius. Pada tahun 4 sM, Senat
    menghormati Augustus Ceaser dan mengganti
    Sextilis menjadi Augustus. Bulan Julius dan
    Augustus dibuat sama 31 hari.
  • Ternyata setahun mengandung 365 ¼ hari kurang
    sedikit sehingga kelebihan. Pada abad ke-16
    kelebihan sampai 10 hari. Agar cocok pada tahun
    1527, 10 hari itu dihilangkan pada bulan Oktober
    (tanggal 5 lompat ke 15) dan selanjutnya setiap
    400 tahun dikurangi 3 hari pada tahun ratusan.

16
  • Penanggalan
  • Masehi 1 1 2000
  • Hijrah 24 Ramadhan 1420
  • Jawa 24 Pasa 1932
  • Yahudi 5761
  • Koptik 1717
  • Ethiopia 1993
  • Persia 1379
  • Hindu 5101
  • Konghucu 25 11 2550
  • Jepang 1 1 2660
  • Romawi 2753
  • Thailand 1 1 - 2543

17
  • TANGGAL JULIAN DI DALAM KOMPUTER
  • Oleh Dali S. Naga
  • Abstract. Database management systems uses
    Julian date in calculating calendar days. To
    understand Julian date, we have to trace it into
    the history of our calendar. Our calendar is
    based on the movement of the moon and the sun.
    Intercalations and cycles are needed to come back
    to the previous positions of the moon and the
    sun. One of the intercalation and system of
    cycle is Julian date. Julian date begins from 1
    January 4713, B.C.
  • Di dalam komputer, seperti pada program
    manajemen basis data, tanggal yang digunakan
    adalah tanggal Julian. Apa sebenarnya tanggal
    Julian itu? Untuk itu, kita perlu menelaah
    sejarah kalender yang sekarang kita gunakan.
    Namun, sebelumnya, kita perlu membedakan dua hal
    yakni kalender dan era. Tanggal kita 2 April,
    hari Rabu, jam 12.00 adalah kalender, tetapi
    tahun kita 2003 adalah era. Gabungan mereka,
    kalender dan era Masehi menghasilkan tanggal 2
    April 2003.
  • Era Masehi
  • Era yang digunakan pada penanggalan kita adalah
    era Masehi, di samping era lain seperti era
    Hijrah, era Saka, dan era Konghucu. Era Masehi
    dihitung sejak kelahiran Yesus. Sekalipun
    demikian, pada waktu kelahiran Yesus, belum ada
    era Masehi. Era Masehi baru kemudian disusun dan
    diusulkan oleh seorang rahib bernama Denys le
    Petit pada tahun 532 Masehi. Pada waktu itu,
    Denys mencoba menghitung mundur untuk menemukan
    tanggal lahir Yesus. Menurut hasil hitung Denys,
    Yesus lahir pada tanggal 25 Desember, 532 tahun
    lalu. Dengan demikian, Denys menetapkan bahwa
    era Masehi dimulai pada hari Sabtu, tanggal 1
    Januari 532 tahun sebelumnya.
  • Walaupun Denys le Petit telah menciptakan era
    Masehi pada tahun 532, namun era Masehi baru
    dipakai di Barat setelah tiga atau empat abad
    kemudian. Dengan demikian, era Masehi baru ada di
    dalam pemakaian pada abad ke-9 atau ke-10.
    Sebelum abad ke-9 atau ke-10, belum ada
    penggunaan era Masehi. Selanjutnya, era Masehi
    tidak mengenal tahun 0. Di dalam perhitungan
    mundur, hanya ada tahun 1 Masehi dan tahun 1
    sebelum Masehi.
  • Kalender
  • Kini kita beralih ke kalender. Di dalam
    kalender, kita mengenal hari. Kapan suatu hari
    dimulai? Ternyata banyak caranya. Ada orang yang
    menghitungnya sejak subuh ke subuh, ada orang
    yang menghitungnya sejak senja ke senja, ada
    orang yang menghitungnya sejak tengah hari ke
    tengah hari. Orang Romawi kuno menghitungnya dari
    tengah malam ke tengah malam. Tradisi Romawi
    inilah yang kita gunakan sekarang pada kalender
    kita yakni hari kita dimulai sejak tengah malam
    ke tengah malam berikutnya.
  • Sehari dibagi menjadi 24 jam berasal dari zaman
    kuno yakni dari zaman Babylonia. Mereka
    menggunakan bilangan Sumeria yakni bilangan yang
    berbasis 60. Dari basis 60 inilah ditemukan
    bilangan 12 yang masing-masing digunakan untuk
    siang dan untuk malam sehingga sehari menjadi 2 x
    12 jam 24 jam. Hal ini pun diterima di
    mana-mana. Hari kita pada saat ini juga terdiri
    atas 2 x 12 jam 24 jam. Satu jam sebanyak 60
    menit dan satu menit sebanyak 60 detik juga
    berasal dari bilangan berbasis enam puluh
    (sexagesimal) yang digunakan oleh orang Sumeria.
  • Siklus Minggu kita yang 7 hari panjangnya
    berasal dari Babylonia dan Yahudi. Di Afrika
    Barat, siklus itu adalah 4 hari di Asia Tengah
    dan juga di Jawa dikenal siklus 5 hari Mesir
    kuno mengenal siklus 10 hari dan Romawi kuno
    mengenal siklus 8 hari. Diduga bahwa siklus 7
    hari berasal dari penanggalan bulan yakni waktu
    selama seperempat bulan. Pengguaan siklus 7 hari
    di dalam kalender kita didasarkan atas dekrit
    Kaisar Constantine I dan dimulai pada tahun 321
    dengan hari Minggu sebagai hari pertama. Di dalam
    dekrit Kaisar Constantine I itu, hari Minggu
    dinyatakan sebagai hari libur. Dan libur Minggu
    itu masih terus kita gunakan sampai sekarang.
  • Bulan merupakan satu bagian dari kalender.
    Perhitungan bulan dilakukan melalui fasa bulan.
    Perhitungan bulan menimbulkan masalah karena satu
    bulan terdiri atas 29 hari lebih sekian jam, pada
    hal jumlah hari di dalam bulan adalah bulat.
    Demikian pula dengan tahun. Satu tahun matahari
    terdiri atas 365 hari lebih sekian jam, pada hal
    jumlah hari di dalam setahun adalah bulat.
    Akibatnya, pada ulang bulan, kedudukan bulan
    tidak tepat sama seperti kedudukannya pada bulan
    lalu. Pada ulang tahun, kedudukan matahari tidak
    tepat sama seperti kedudukannya pada tahun lalu.
  • Untuk menyelesaikan masalah sekian jam yang lebih
    pada setiap bulan dan pada setiap tahun, maka
    pada bulan dan tahun tertentu diberikan tambahan
    hari. Hal ini dikenal sebagai interkalasi.
    Interkalasi merupakan hal yang cukup rumit di
    dalam kalender. Tidak mudah untuk menemukan
    interikalasi yang menyebabkan kedudukan bulan
    atau matahari tepat kembali sama seperti pada
    waktu sebelumnya.
  • Kalender Romawi
  • Kita tinggalkan dulu interkalasi ini dan
    menengok ke sejarah kalender kita. Kalender kita
    berasal dari kalender Romawi kuno. Konon
    kabarnya, kalender Romawi kuno ditetapkan oleh
    raja pertamanya pada abad ke-7 atau ke-8 sebelum
    Masehi. Pada ketentuan raja Romulus ini, awal
    tahun dimulai pada bulan Martius dan diakhiri
    pada bulan December (desi 10). Panjang tahun
    adalah 10 bulan. Setiap bulan terdiri atas 30
    atau 31 hari sehingga di dalam setahun terdapat
    304 hari. Setelah itu terdapat celah musim dingin
    yang tidak ada kalendernya.
  • Raja kedua Numa Pompilius membagi celah musim
    dingin itu menjadi dua bulan yakni bulan
    Januarius dan Februarius. Dua bulan tambahan
    sebanyak 50 hari ini diletakkan di akhir tahun
    sehingga di dalam setahun terdapat 354 hari.
    Kemudian pada bulan Januarius ditambahkan satu
    hari lagi sehingga di dalam setahun terdapat 355
    hari.
  • Raja kelima Tarquinius Priscus (616 579 sM)
    adalah orang Etruscan. Kalender diubah menjadi
    kalender republik. Pada kalender republik ini,
    Februarius 28 hari Martius, Maius, Julius (waktu
    itu masih bernama Quintilis), dan October,
    masing-masing 31 hari serta Januarius, Aprilis,
    Junius, Augustus (waktu itu masih bernama
    Sextilis), dan December, masing-masing 29 hari.
    Di dalam setahun terdapat 355 hari. Raja ini juga
    memindahkan awal tahun ke bulan Januarius namun
    pada tahun 510 sM, melalui pengusiran orang
    Estrucan, awal tahun dikembalikan ke bulan Maret.
  • Pada setiap akhir tahun, orang Romawi melakukan
    pembayaran upah. Sering upah berkenaan dengan
    pekerjaan di dalam musim yang dipengaruhi oleh
    kedudukan matahari. Namun dengan 355 hari
    setahun, kedudukan matahari bergeser dari akhir
    tahun ke akhir tahun. Karena itu orang Romawi
    menambahkan 22 dan 23 hari selang-seling pada
    setiap dua tahun, dan tambahan diselipkan di
    antara tanggal 23 dan 24 Februarius. Dengan
    demikian, setiap empat tahun terdapat 1465 hari
    atau rerata di dalam setahun terdapat 366,25
    hari.
  • Julius Ceaser memanggil Sosigenes untuk membenahi
    kalender. Sosigenes menggunakan tahun dengan
    365,25 hari. Pada tahun 46 sM, Sosigenes
    menambah 67 hari ke dalam kalender sehingga pada
    tahun itu terdapat 445 hari. Mulai tahun 45 sM,
    Romawi menggunakan kalender baru yakni tahun
    dimulai pada tanggal 1 Januarius. Bulan
    Januarius, Martius, Maius, Quintilis (Juli),
    September, November terdiri atas 31 hari. Bulan
    Aprilis, Junius, Sextilis (Agustus), October, dan
    December terdiri atas 30 hari. Bulan Februarius
    terdiri atas 29 hari. Di dalam setahun terdapat
    365 hari. Dan setiap empat tahun, di antara
    tanggal 23 dan 24 Februari ditambah satu hari.

18
(No Transcript)
19
(No Transcript)
20
  • Tanggal Julian (tahun 1583 oleh Joseph Justus
    Scaliger)
  • Menggabungkan tiga siklus interkalasi
  • 19 x 15 x 28 7980 tahun
  • Titik temu terakhir pada tahun 4713 sM
  • Patokan tanggaln Julian 1 Januari 4713 sM sebagai
    tanggal 1 (dimulai tengah hari)
  • 2 Oktober 2004 2 454 178

21
Zaman KunoSebelum Abad ke-5 sM
  • Keteraturan Alam (Ramuan Bahan)
  • Keteraturan alam lainnya terdapat pada ramuan
    bahan (material, logam, obat)
  • Mereka menjadi ilmu bahan dan farmasi
  • Di samping ilmu bahan dan farmasi, terdapat pula
    ramuan bercampur kepercayaan dan mistik yang
    dikenal sebagai alkemi
  • Keteraturan Alam (Pengobatan)
  • Keteraturan alam juga terdapat pada pengobatan
    orang sakit
  • Mereka menjadi tabib dan dukun
  • Di samping itu, terdapat pula kepercayaan dan
    mistik yang dikenal sebagai tenung

22
Zaman KunoSebelum Abad ke-5 sM
  • Keteraturan Alam (Pertukangan)
  • Keteraturan alam lainnya adalah pembuatan alat
  • Mereka dikenal sebagai pertukangan
  • Salah satu kegiatan arkeologi adalah mencari
    karya pertukangan pada zaman purbakala
  • Tenung
  • Merupakan kekuatan gaib yang dapat menyembuhkan
    atau menyakitkan orang
  • Sekalipun tidak ada dasar ilmiahnya, sampai
    sekarang pun, kalangan tertentu masih percaya
    akan kekuatan tenung (guna-guna)

23
Zaman KunoSebelum Abad ke-5 sM
  • Astrologi
  • Di samping astronomi, muncul juga pengetahuan
    lain yang dikenal sebagai astrologi
  • Menurut astrologi, dunia bintang-bintang adalah
    makrokosmos dan dunia manusia adalah mikrokosmos
  • Mikrokosmos adalah refleksi dari makrokosmos
    sehingga nasib manusia dapat diramal dari gejala
    bintang-bintang di langit
  • Jam dan tanggal lahir menjadi patokan untuk
    ramalan nasib manusia
  • Peranan Astrologi
  • Peranan astrologi melampau batas zaman kuno
  • Sampai sekarang pun masih muncul ramalan
    astrologi di dalam majalah

24
  • ASTROLOGY
  • Astrology is the type of divination that
    consists in interpreting the influence of planets
    and the stars on earthly affairs in order ot
    predict the destinies of individuals, groups, or
    nations. At times regarded as science, astrology
    has exerted an extensive or a peripheral
    influence in many civilizations, both ancient and
    modern. Astrology has also been defined as a
    pseudoscience and considered to diametrically
    opposed to the theories and findings of modern
    science.
  • Astrology originated in Mesopotamia, perhaps in
    the 3rd millenium BC, but attained its full
    development in the Western world much later,
    within the orbit of Greek civilization of the
    Hellenistic period. It spread to India in its
    older Mesopotamian form. Islamic culture absorbed
    it as part of the Greek heritage and in the
    Middle Ages, when Western Europe was strongly
    affected by Islamic science, European astrology
    also felt the influence of the Orient.
  • The Egyptian also contributed though less

25
  • directly, to the rise of astrology. They
    constructed a calendar, containing 12 months of
    30 days each with five days added at the end of
    the year, that was subsequently taken over by the
    Greeks as a standard of reference for
    astronomical observations. In order that the
    starry sky might serve them as a clock, the
    Egyptians selected a successian of 36 bright
    stars whose risings were separated from each
    other by intervals of 10 days. Each of these
    stars, called decans by Latin writers, was
    conceived of as a spirit with power over the
    period of time for which it served they later
    centered the zodiac as subdivisions of its 12
    signs.
  • In pre-Imperial China, the belief in an
    intelligible cosmic order, comprehended aspects
    of which would permit influences on correlated
    incomprehended aspects, found expression in
    correlation charts that juxtaposed natural
    phenomena with the activities and the fate of
    man. The transition from the belief to a truly
    astrological belief in the direct influence of
    the stars on human affairs was slow, and numerous
    systems of observation and strains of lore
    developed. When Western astronomy and astrology
    became known in China through Arabic influence in

26
  • Mongol times, their data were also integrated
    into the Chinese astrological corpus. In the
    later centuries of Imperial China it was
    universal practice to have a horoscope case for
    each newborn child and at all decisive junctures
    in life.
  • Once established in the classical world, the
    astrological conception of causation invaded the
    sciences particularly medicine and allied
    disciplines. The Stoics, espousing the doctrine
    of a universal sympathy linking microcosm of
    man with the macrocosm of nature, found in
    astrology a virtual map of such a universe.
  • Greek astrology was slow to be absorbed by the
    Romans, who had their own native methods of
    divination, but by the times of Augustus, the art
    had resumed its original role as a royal
    prerogative. Attempts to stress its influence on
    the populace met repeatedly with failure.
  • Throughout pagan antiquity the words astronomy
    and astrology had been synonymous in the first
    Christian centuries the modern distinction
    between astronomy, the science of stars, began to
    appear. As against the omnipotence of the stars,
    Christianity

27
  • taught the omnipotence of their Creator. To the
    determinism of astrology Christianity opposed the
    freedom of the will. But within these limits the
    astrological worldview was accepted. To reject it
    would have been to reject the whole heritage of
    classical culture, which had assumed an
    astrological complexion. Even at the centre of
    Christian history, Persian magi were reported to
    have followed a celestial omen to the scene of
    the Nativity.
  • Although various Christian councils condemned
    astrology the belief in the worldview it implies
    was not seriously shaken. In the late European
    Middle Ages, a number of universities, among them
    Paris, Padua, Bologna, and Florence, had chairs
    of astrology. The revival of ancient studies by
    the humanists only encouraged this interest,
    which persisted into the Renaissance and even
    into the Reformation.
  • It was Copernican revolution of the 16th century
    that dealt with the geocentric worldview of
    astrology its shattering blow. As a popular
    pastime or superstition, however, astrology
    continued into modern times to engage the
    attention of millions of people.

28
Zaman KunoSebelum Abad ke-5 sM
  • Alkemi
  • Di samping ramuan bahan secara alamiah, muncul
    kepercayaan dan mistik berkenaan dengan ramuan
    bahan itu
  • Ramuan dengan kepercayaan seperti ini dikenal
    sebagai alkemi
  • Alkemi bertujuan untuk membuat emas dari bahan
    murah serta membuat obat panjang umur yang
    membuat orang tidak mati
  • Ada alkemi yang hanya rajin menulis melalui sandi
    rahasia serta ada alkemi yang rajin meramu bahan
  • Peranan Alkemi
  • Peranan alkemi melampaui batas zaman kuno
  • Mereka baru hilang pada zaman modern (abad ke-18
    dan ke-19)

29
Zaman KunoSebelum Abad ke-5 sM
  • Asas Determinisme Universal
  • Ada keteraturan alam yang ditemukan oleh manusia
  • Ada kepastian tentang keteraturan alam itu
  • Mereka menjadi suatu asas yakni asas determinisme
    universal
  • Asas ini dikenal sejak Zaman Kuno dan terus
    berlangsung sampai sekarrang
  • Asas determinisme universal menjadi dasar untuk
    menemukan dan mengembangkan ilmu
  • Asas Indeterminisme
  • Dikenal sebagai uncertainty principle, ditemukan
    oleh Heisenberg pada tahun 1928
  • Bertentangan dengan asas determinisme universal,
    tetapi hanya berlaku di fisika partikel subatomik
    dan dalam ukuran yang sangat kecil

30
Zaman Yunani Kuno5 sM sampai 1 sM
  • Kebudayaan Yunani
  • Zaman ini merupakan zaman emas Yunani Kuno
  • Budaya berkembang ke arah kecendekiaan
  • Sekalipun Yunani Kuno mengenal dewa dan dewi,
    pemikiran mereka tidak melibatkan dewa dewi itu
  • Di zaman itu lahir filsafat dan demokrasi dan
    sangat berpengaruh terhadap kebudayaan barat
    sampai sekarang
  • Babakan
  • Zaman pra-Sokrates
  • Zaman Sokrates
  • Zaman pasca-Sokrates

31
Zaman Yunani Kuno5 sM sampai 1 sM
  • Zaman Pra-Sokrates
  • Ada tiga pemikiran besar pada zaman itu yang
    dibicarakan di sini
  • Unsur dasar pembentuk alam dan bentuk alam
  • Alam tunggal dan alam jamak
  • Realitas bilangan
  • Zaman Sokrates (Sokrates, Plato, Aristoteles)
  • Dialog
  • Metafisika dan epistemologi
  • Logika
  • Etika dan estetika
  • Zaman Pasca-Sokrates
  • Stoik, Epikurus, Cynics, dan Skeptik

32
  • Greece
  • Greece, officially called Hellenic Republic
    (Greek ???????? ??µ???at?a Eliniki Dhimokratia),
    is a country in the southeast of Europe on the
    southern tip of the Balkan peninsula.
  • The historical name of Greece in Greek is ?????
    Ellas. This name is also written Hellas in
    English, following the ancient Greek
    pronunciation. More commonly, it is called ????da
    Elladha in modern Greek. The mythical ancestor of
    the Greek is the eponymous Hellen.
  • The name of Greece in European languages
    (English Greece, French Grèce, Portuguese
    Grécia, Spanish and Italian Grecia, German
    Griechenland, Russian ??????, etc) comes from a
    different root G?a???? Graik?s (via Latin
    Graecus) which according to Aristotle was an
    ancient name of the Greeks. On the other hand,
    the name of Greece in some Middle Eastern and
    Eastern languages (Turkish Yunanistan, Arabic
    (tulisan Arab Yunan), Hebrew (tulisan Hebrew),
    ancient Persian Yauná, Indian Pali Yona, Malay
    and Indonesian Yunani) derives from the Greek
    toponym ????a Ionia. Norwegian is one of the few
    languages apart from Greek in which the name
    Hellas predominates.

33
  • THE HELLENISTIC WORLD
  • The history of the Greek-speaking world in
    antiquity may be divided into three periods that
    of the free City States, which was brought to an
    end by Philip and Alexander that of the
    Macedonian domination, of which the last remnant
    was extinguished by the Roman annexation of Egypt
    after the death of Cleopatra and finally that of
    the Roman Empire. Of these three periods, the
    first is characterized by freedom and disorder,
    and the second by subjection and disorder, the
    third by subjection and order.
  • The second of these periods is known as the
    Hellenistic age. In science and mathematics, the
    work done during this period is the best ever
    achieved by the Greeks. In philosophy, it
    includes the foundation of the Epicurean and
    Stoic schools, and also of scepticism as a
    definitely formulated doctrine it is therefore
    still important philosophically, though less so
    than the period of Plato and Aristotle. After the
    third century BC, there is nothing really new in
    Greek philosophy until the Neoplatonists in the
    third century AD. But meanwhile the Roman world
    was being prepared for the victory of
    Christianity. ...
  • After Alexanders death, there was an
    attempt to preserve the unity of his empire. But
    of his two sons,

34
  • one was an infant and the other was not yet born.
    Each had supporters, but in the resultant civil
    war both were thrust aside. In the end, his
    empire was divided between the families of three
    generals, of whom, roughly speaking one obtained
    the European, one the African, and one the
    Asiatic parts of Alexanders possessions. The
    European part fell ultimately to Antigonuss
    descendants Ptolemy, who obtained Egypt, made
    Alexandria his capital Seleucus, who obtained
    Asia after many wars, was too busy with campaigns
    to have a fixed capital, but at later times
    Antioch was the chief city of his dynasty.
  • From the point of view of Hellenistic
    culture, the most brilliant success of the third
    century BC was the city of Alexandria. Egypt was
    less exposed to war than the European and Asiatic
    parts of the Macedonian domain, and Alexandria
    was in extraordinarily favoured position for
    commerce. The Ptolemies were patrons of learning,
    and attracted to their capital many of the best
    men of the age. Mathematics became, and remained
    until the fall of Rome, mainly Alexandrian
    from Bertrand Russell, History of Western
    Philosophy

35
Zaman Yunani KunoPra-Sokrates Unsur Alam
  • Unsur Dasar Alam
  • Menurut Thales dari Miletus ( 624 sM - 546 sM)
    adalah air
  • Menurut Anaximenes ( 570 sM - 500 sM) adalah
    udara
  • Menurut Xenophanes ( 570 sM - 480 sM) adalah
    tanah
  • Menurut Heraklitus ( 540 sM - 475 sM) adalah
    api
  • Menurut Empedokles ( 490 sM - 430 sM) adalah
    kombinasi dari air, udara, tanah, dan api
  • Sifat Dasar Unsur
  • panas dan dingin
  • kering dan basah

36
  • THALES OF MILETUS
  • Thales of Miletus (fl. 6th century BC),
    philosopher remembered for his cosmology based on
    water as the essence of all matter. According to
    the Greek thinker Apollodorus, he was born in
    624 the Greek historian Diogenes Laeritus placed
    his death in the 58th Olympiad (548-545) at the
    age of 78.
  • No writings by Thales survive, and no
    contemporary sources exist thus, his achievement
    are difficult to assess. Inclusion of his name
    in the canon of legendary Seven Wise Men led to
    his idealization, and numerous acts and sayings,
    many of them no doubt spurious, were attributed
    to him. According to Herodotus, Thales was a
    practical statesman who advocated the federation
    of Ionian cities of the Aegian region. The Greek
    scholar Callimachus recorded a traditional belief
    that Thales advised navigators to steer by the
    Little Bear (Ursa Minor) rather than by the Great
    Bear (Ursa Major), both prominent constellation
    in the north.

37
  • He is also said to have used his knowledge of
    geometry to measure the Egyptian pyramids and to
    calculate the distance from the shore of ships at
    sea. Although such stories are probably
    apocryphal, they illustrate Thales reputation.
    The Greek writer Xenophanes claimed that Thales
    predicted the solar eclipse that stopped the
    battle between the Lydian Alyattes and the Median
    Cyaxares, evidently on May 48, 585. Modern
    scholars believe, however, that he could not
    possibly have had the knowledge to predict
    accurately either the locality or the character
    of an eclipse. Thus, his feat was apparently
    isolated and only approximate Herodotus spoke of
    his foretelling the year only. That the eclipse
    was nearly total and occurred during a crucial
    battle probably contributed considerably to his
    exaggerated reputation as an astronomer.
  • In geometry Thales has been credited with the
    discovery of five theorems (1) that a circle is
    bisected by its diameter, (2) that angles at the
    base of a triangle having two sides of equal
    length are equal, (3) the opposite angles of
    intersecting straight lines are equal, (4) that
    the angle inscribed in a semicircle is a right
    angle, and (5) that a triangle is determined if
    its base and the angles relative to the base are
    given. His mathematical achievements are
    difficult o assess, however, because of the
    ancient practice of crediting particular
    discoveries to men with a general reputation for
    wisdom.

38
  • The claim that Thales was the founder of a
    European philosophy rests primarily on Aristotle,
    who wrote that Thales was the first to suggest a
    single material substratum for the
    universenamely, water, or moisture. Even though
    Thales as philosopher renounced mythology, his
    choice of water as the fundamental building block
    of matter had its precedent in tradition. A
    likely consideration in this choice was the
    seeming motion that water exhibits, as seen in
    its ability to become vapour for what changes or
    moves itself was thought by the Greeks to be
    close to life itself. To Thales the entire
    universe is a living organism, nourished by
    exhalations from water.
  • Thales significance lies in his choice of water
    as the essential substance than in his attempt to
    explain nature by the simplification of phenomena
    and in his search for causes within nature itself
    rather than in the caprices of anthropomorphic
    gods. Like his successors Anaximander and
    Anaximenes, Thales is important in bridging the
    worlds of myth and reason.

39
Zaman Yunani KunoPra-Sokrates Unsur Alam
  • Letak Unsur
  • Tanah
  • di tengah alam, benda jatuh karena kembali ke
    letak asal
  • Air
  • di tepi tanah, air keluar dari tanah melalui
    mata air karena kembali ke letak asal
  • udara
  • di tepi air, udara di dalam air bergelembung
    naik karena kembali ke letak asal
  • api
  • di tepi udara, dalam bentuk kilat di langit
  • Unsur kelima (quintessential)
  • unsur pembentuk benda langit, unsur sempurna

40
Zaman Yunani KunoPra-Sokrates Unsur Alam
  • Sifat Unsur
  • tanah kering dingin
  • air basah dingin
  • udara basah panas
  • api kering panas
  • Benda
  • Benda merupakan kombinasi dari keempat unsur
    beserta sifat mereka
  • Asumsi
  • Unsur alam beserta sifatnya ini dijadikan asumsi
    di dalam pengetahuan kemudian

41
Zaman Yunani KunoPra-Sokrates Unsur Alam
42
Zaman Yunani KunoPra-Sokrates Unsur Alam
  • Bentuk Alam
  • Menurut Anaximander ( 610 sM - 546 sM) dari
    Miletus langit berentuk bola serta permukaan bumi
    melengkung dan berbentuk silinder dengan sumbu
    timur-barat
  • Menurut Anaximenes dari Miletus, bumi berbentuk
    meja bundar (cakram)
  • Menurut Pythagoras, bumi berbentuk bola
  • Alam
  • alam terdiri atas substansi dan bentuk
  • Peta Zaman Kuno
  • Timur (orient) terletak di atas
  • Membaca peta, perlu mencari letak timur dulu
  • Pencarian letak timur (orient) adalah orientasi

43
Zaman Yunani KunoPra-Sokrates Wujud Alam
  • Paham Alam Tunggal (Monisme)
  • Realitas alam adalah tunggal walaupun tampak
    jamak
  • Tidak ada celah
  • Tidak terbagi
  • Tiada gerakan (statis)
  • Penganut perguruan Elea yang dipimpin oleh
    Parmenides

44
Zaman Yunani KunoPra-Sokrates Wujud Alam
  • Paham Alam Jamak (Pluralisme)
  • Realitas alam adalah jamah (banyak)
  • Ada celah
  • Terbagi
  • Ada gerakan (dinamis)
  • Penganut Heraklitus dan Empedokles

45
Zaman Yunani KunoPra-Sokrates Wujud Alam
  • Perguruan Elea
  • Dipimpin oleh Parmenides
  • Pengikut terkenal adalah Zeno dari Elea
  • Menganut alam tunggal (monisme)
  • Heraklitus
  • Mengagumi api yang bergerak dan air yang
    mengalir
  • Ucapan terkenal panta rhei semua mengalir
  • Menganut alam jamak
  • Empedokles
  • Substansi alam terus bergerak, berpadu melalui
    kasih, dan bercerai melalui benci, berulang-ulang
    terjadi secara periodik
  • Menganut alam jamak

46
  • PARMENIDES
  • Parmenides (b. c. 515 BC), Greek philosopher of
    Elea in southern Italy who founded Eleaticism,
    one of the leading per-Socratic schools of Greek
    thought. His general teaching has been diligently
    reconstructed from the few surviving fragments of
    his principal work, a lengthy three-part verse
    composition titled On Nature.
  • Parmenides held that the multiplicity of
    existing things, their changing forms and motion,
    are but an appearance of a single eternal reality
    (Being), thus giving rise to the Parmenidian
    principle that all is one. From this concept of
    Being, he went on to say that all claims of
    change or or bob-Being are illogical. Because he
    introduced the method of basing claims about
    appearances on a logical concept of Being, he is
    considered one of the founders of metaphysics.
  • Platos dialogue the Parmenides deals with his
    thought. An English translation of his work was
    edited by L. Taran (1965).

47
Zaman Yunani KunoPra-Sokrates Wujud Alam
  • Paradoks Zeno
  • Zeno dari Elea (penganut paham alam tunggal)
    membantah paham alam jamak melalui empat paradoks
  • Paradoks dikotomi
  • Paradoks Achilles
  • Paradoks panah
  • Paradoks stadion
  • Cara
  • Menggunakan paham alam jamak (terbagi) dan
    menunjukkan ketidaklogisan

48
Zaman Yunani KunoPra-Sokrates Wujud Alam
  • Paradoks Dikotomi
  • Dari titik A bergerak menuju ke titik B
  • Kalau jarak ini terbagi (paham jamak) maka jalan
    itu dibagi dua
  • Setelah tiba di tengah jalan, sisa jalan dibagi
    dua lagi
  • Setelah mencapai titik tengahnya, sisa jalan
    dibagi dua lagi
  • Demikian seterusnya, sehingga kita tidak mungkin
    tiba di B

A
B
49
Zaman Yunani KunoPra-Sokrates Wujud Alam
  • Paradoks Achilles
  • Achilles adalah dewa Yunani yang larinya
    tercepat kura-kura adalah hewan yang jalannya
    paling lambat
  • Achilles ingin menyusul kura-kura yang sudah
    lebih dahulu berjalan
  • Setiap kali Achilles tiba ke tempat kura-kura,
    sang kura-kura sudah maju sedikit
  • Demikian seterusnya, sehingga Achilles tidak
    mungkin melewati kura-kura
  • Bahkan menurut paradoks dikotomi, Achilles tidak
    mungkin mencapai tempat kura-kura

Achilles
Kura-kura
50
Zaman Yunani KunoPra-Sokrates Wujud Alam
  • Teori Atom
  • Leucippus dan Democritos muncul dengan teori atom
    ( a tomos tidak terpenggal)
  • Menurut mereka segala sesuatu memiliki bagian
    terkecil berupa atom
  • Segala sesuatu itu meliputi benda dan bukan benda
    (berbeda dengan atom unsur di kimia)
  • Benda kayu, batu, air bukan benda api, jiwa,
    perasaan, pikiran
  • Ada atom kasar seperti atom api ada atom halus
    (eidola) seperti atom jiwa (psyche)
  • Pemenggalan sesuatu akan terhenti pada atom
  • Tampaknya teori atom ini dapat menjawab paradoks
    Zeno

51
Zaman Yunani KunoPra-Sokrates Bilangan
  • Perguruan Pythagoras
  • Kita mengenal dalil Pythagoras di geometri
    (sebelum Pythagoras, dalil ini sudah dikenal)
  • Sebenarnya, banyak hal yang dikemukakan oleh
    Perguruan Pythagoras, dan kesemuanya berkenaan
    dengan bilangan
  • Paham Pythagoras
  • Segala sesuatu duduk di atas bilangan dan dapat
    dinyatakan dalam bilangan
  • Perguruan Pythagoras menemukan berbagai sifat
    bilangan
  • Tugas ahli filsafat, menurut perguruan
    Pythagoras, adalah mencari bilangan itu

52
  • PYTHAGOREAN PHILOSOPHY
  • Although much of the tradition about Pythagorean
    philosophy is confused because of dissensions
    within the school and on account of intermixture
    of later speculation with earlier doctrine, yet
    some of the chief principles are quite clear.
    Pythagorass discoveries in musical theory, such
    as that the basic musical harmonies depend on
    very simple numerical ratios between the
    dimensions of the instruments (such as strings,
    pipes, disks) producing them, let him interpret
    the world as a whole through numbers. The
    discovery was the basis for the Pythagorean
    theory of numbers, of which the systematic study
    induced the intense Pythagorean devotion to
    mathematics and the subsequent development of
    this science by Greek scientists. Pythagoras
    taught that number is the fundamental part of the
    worlds framework. According to his theory that
    the dominant note of the universe are proportion,
    order, and harmony. All three are expressible by
    numerical relations. Pythagoreans thus considered
    that the universes essential character is
    number, but they went beyond this by asserting
    that the world is made of numbersa doctrine that
    is the core of Pythagorean

53
  • philosophy. In preaching this principle the
    Pythagoreans both propounded several semi
    mystical speculations and discovered more
    scientific truths.
  • On the speculative side occurs the celebrated
    Pythagorean table of opposites, derived from
    their proposition that the universe is composed
    of pairs of contradictories. The pairs are 10 in
    number (1) limited and unlimited (2) odd and
    even (3) one and many (4) right and left (5)
    masculine and feminine (6) rest and motion (7)
    straight and crooked (8) light and darkness (9)
    good and evil (10) square and oblong. Though
    this theory may not be so fantastic as it
    appears, the Pythagorean development of numbers
    was quite arbitrary in the following proposition.
    The number 1 is the point, 2 is the line, 3 is
    the plane, 4 is the solid, 5 is physical
    qualities, 6 is animation, 7 is intelligence and
    health, 8 is love, friendship, wisdom.
    Identification of different numbers with
    different things exemplifies no principle. The
    Pythagoreans themselves disagreed on what number
    should be assigned to what things. Thus, since
    justice is that which returns equal for equal,
    the only numbers which do this are square
    numbers thus 4 equals 2 into 2 and so returns
    equal for

54
  • for equal thus 4 must be justice. But since 9 is
    equally square of 3, 9 also can represent
    justice. Such speculation seems sterile, save to
    numerologists.
  • Among the Pythagorean achievements in science
    were
  • (1) The Pythagorean theorem, reliably reported
    to have been discovered by Pythagoras, to whose
    speculation was owed also, quite probably, most
    of the first book of Euclids Stoicheaia
    (Elements) on geometry.
  • (2) By 500 BC the earth sphericity was
    proclaimed by Pythagoreans, who were among the
    first, if not the first, to teach it.
  • (3) Hippasus (fl. 450 BC) discovered
    incommensurability and elaborated a theory of
    proportions applicable to incommensurables.
  • (4) By 400 BC the Pythagoreans taught the theory
    that the earth, sun, and moon, planets, and fixed
    stars revolve around a central firea denial of
    the earlier and later geocentric view of the
    universe and an anticipation of Nicolaus
    Copernicus heliocentric hypothesis announced in
    1543. From this theory they

55
  • developed the doctrine of the music of the
    spheres, which lasted into modern times.
  • (5) Archytas of Tarentum (fl. 360 BC)
    developed a very advanced theory of acoustics and
    founded mechanics.
  • (6) At an undetermined date Pythagoreans
    developed the theory of mathematical means and
    they also invented the theory of polygonal
    numbers.
  • Pythagorean ethics consisted in ascetics
    practice. Happiness was the perfection of the
    souls virtue, which was a kind of harmony. The
    process of purification of the soul was
    accomplished by metemorsychosis, the
    transmigration of the soul, a theory imported by
    Pythagoreans from the Orient and one of their
    most characteristic dogmas.

56
Zaman Yunani KunoPra-Sokrates Bilangan
  • Harmoni
  • Pythagoras menemukan bahwa nada dapat dinyatakan
    dengan rasio panjang kawat yang menghasilkan
    nada (1 ¾ 2/3 ½ ) atau (12 9 8 6)
  • oktaf (diaspason) 12 6 fourth (diatessaron) 8
    6 fifth (diapente) 12 8
  • Rasio ini dinamakan harmoni
  • Menurut mereka, jarak benda langit ke bumi juga
    memiliki rasio harmonis (music of the sphere)
  • Menurut mereka, tubuh manusia sehat memiliki tone
    yang harmonis sakit berarti tone tidak harmonis
    lagi, diobati dengan tonikum

57
Zaman Yunani KunoPra-Sokrates Bilangan
  • Arti Bilangan
  • 1 titik penalaran
  • 2 garis pendapat
  • 3 bidang
  • 4 bentuk ruang keadilan
  • 5 kualitas fisik perkawinan
  • 6 animasi semangat
  • 7 inteligensi kesehatan
  • 8 cinta persahabatan kearifan
  • 9 keadilan
  • Genap Ganjil
  • Bilangan genap (artios) tidak disukai karena
    mudah terbagi/pecah
  • Bilangan ganjil (perissos) disukai karena tidak
    mudah terbagi/pecah

58
Zaman Yunani KunoPra-Sokrates Bilangan
  • Bilangan 10
  • Bilangan 10 adalah ideal karena 1 2 3 4
    10
  • Ada 10 pasang lawanan
  • terbatas lawan tak terbatas
  • ganjil lawan genap
  • satu lawan banyak
  • kanan lawan kiri
  • lelaki lawan perempuan
  • diam lawan gerak
  • lurus lawan bengkok
  • terang lawan gelap
  • baik lawan jahat
  • bujur sangkar lawan lonjong

59
Zaman Yunani KunoPra-Sokrates Bilangan
  • Bilangan dan Gambar
  • Bilangan bulat bilangan segi tiga
  • Bilangan ganjil bilangan bujur sangkar
  • Bilangan genap bilangan persegi panjang
  • Bilangan segi lima
  • Bilangan kubik
  • Number and Figure
  • Di dalam bahasa Inggris figure dapat diartikan
    number atau bilangan rupanya dari sini
  • Bilangan Irasional
  • Bilangan ?2, ?3 membingungkan perguruan ini
    karena tidak dapat dinyatakan sebagai rasio dua
    bilangan bulat

60
Zaman Yunani KunoPra-Sokrates Bilangan
61
  • THE SQUARE ROOT OF TWO
  • The square root of 2, which was the first
    irrational to be discovered, was known to the
    early Pythagoreans, and ingenious methods of
    approximating to its value was discovered. The
    best was as follows Form two columns of numbers,
    which we will call the as and the bs each
    starts with 1. The next a, at each stage, is
    formed by adding the last a and b already
    obtained the next b is formed by adding twice
    the previous a to the previous b. The first 6
    pairs so obtained are (1,1), (2,3), (5,7),
    (12,17), (29,41), (70,99). In each pair, 2a2?b2
    is 1 or ?1. Thus b/a is nearly the square root of
    two, and at each fresh step it gets nearer. For
    instance, the reader may satisfy himself that the
    square of 99/70 is very nearly equal to 2. from
    Bertrand Russell, History of Western Philosophy
  • (a, b), (a, b),
  • a a b
  • b 2a b ? b/a

62
Zaman Yunani KunoPra-Sokrates Bilangan
  • Sifat Bilangan
  • Bilangan sempurna
  • jumlah faktor bilangan
  • mis. 1 2 3 6
  • 1 2 4 7 14 28
  • Bilangan berkekurangan
  • jumlah faktor lt bilangan
  • mis. 1 2 4 lt 8
  • Bilangan berlimpahan
  • jumlah faktor gt bilangan
  • mis. 1 2 3 4 6 gt 12
  • Bilangan bersahabat
  • jumlah faktor bilangan bilangan sahabatnya
  • mis. 1245101120224455110284
  • 12471142220

63
Zaman Yunani KunoPra-Sokrates Protagoras
  • Protagoras (c. 500 sM)
  • Menyatakan dirinya sebagai sophist
  • Tidak mendirikan perguruan, menerima bayaran dari
    jasa mengajar
  • Ukuran
  • Menurut Protagoras, manusia adalah ukuran dari
    semua benda, tentang benda yang ada dan tentang
    benda yang tidak ada
  • Akibatnya, menurut orang yang satu, benda adalah
    seperti ini, tetapi menurut orang yang lain, bisa
    lain lagi
  • Baik dan benar
  • Sesuatu bisa lebih baik tetapi belum tentu lebih
    benar

64
Zaman Yunani KunoSokrates
  • Perguruan
  • Sokrates adalah guru dari Plato
  • Plato adalah guru dari Aristoteles
  • Sokrates, Plato, Aristoteles adalah tiga ahli
    filsafat yang terkenal dari zaman Yunani Kuno
  • Setelah Aristoteles, Yunani ditaklukkan oleh
    Alexander, dan mengalami kemunduran
  • Kegiatan Sokrates ( 470 sM - 399 sM)
  • Memiliki perguruan
  • Tidak menulis buku karyanya terdapat di dalam
    tulisan Plato
  • Ikut dalam politik sehingga dihukum mati pada
    tahun 399 sM
  • Merintis metoda dialog
  • Filsafat moral dan hipotesis

65
Zaman Yunani KunoPlato
  • Perguruan
  • Memberi pelajaran di taman Akademon di pinggir
    kota Athena
  • Dikenal sebagai Perguruan Akademia (asal usul
    dari kata akademik) dari 387 sM sampai 529
  • Perguruan Akademia
  • Akademia tua oleh Plato (387 sM), diteruskan
    oleh pengikutnya (dan kemanakan) Speusippus,
    Xenokrates dari Khalkedon, Polemon dari Athena,
    Krates
  • Akademia pertengahan diteruskan oleh Arkesilaus
    (316 - 241 sM)
  • Akademia baru oleh Kameades (214?sM - 129 sM)
  • Dibubarkan oleh Kaisar Justinian pada tahun 529

66
Zaman Yunani KunoPlato
  • Kegiatan Plato ( 427 sM - 347 sM)
  • Meninggalkan banyak karya paling terkenal adalah
    Dialogue
  • Merintis teori bentuk (form, ide) yakni bentuk
    umum (universal) dari sesuatu seperti kursi,
    biru, buku, pohon
  • Diduga bahwa bentuk umum ini ada di dalam ide,
    maka dikenal juga sebagai ide
  • Berkarya juga di bidang epistemologi, logika,
    etika, hukum, metoda dialektika (dialog)
  • Paham tentang Pengetahuan
  • Menganut paham tunggal dari Parmenides, terutama
    tentang ketidakubahan pengetahuan
  • Benda berubah tetapi bentuk tidak berubah
    pengetahuan harus melalui bentuk atau ide yang
    tidak berubah

67
Zaman Yunani KunoAristoteles
  • Perguruan
  • Memberi pelajaran sambil berjalan-jalan
    (peripatetik) di taman Lyceum
  • Dikenal sebagai Perguruan Lyceum
  • Karena mengajar sambil berjalan-jalan, anggota
    perguruan ini dikenal sebagai Peripatetik
  • Pernah memberi pelajaran kepada anak Raja yang
    kemudian menjadi Alexander Agung
  • Kegiatan Aristoteles (384 sM - 322 sM)
  • Meninggalkan banyak sekali karya
  • Merintis logika, terutama silogisme
  • Merintis kategori substansi, kuantitas,
    kualitas, relasi, tempat, waktu, posisi, status,
    aksi, kepasifan (terkena aksi)
  • Terkenal dengan metoda induksi dan deduksi, serta
    teleologi

68
Zaman Yunani KunoAristoteles
  • Kegiatan Ilmiah
  • Sebagai anak dokter, ia banyak menelaah alam
    terutama biologi dan psikologi
  • Tidak sepaham dengan Plato tentang bentuk (ide)
    Plato bentuk sebelum materi, Aristotles bentuk di
    dalam materi
  • Bidang Karya Aristoteles
  • Dari karya yang masih dapat ditemukan, karya
    Aristoteles dapat dikelompokkan ke dalam beberapa
    bidang
  • Filsafat teoretik atau spekulatif (teologi,
    fisik, metafisika, biopsikologi)
  • Filsafat Praktis (etika dan ilmu politik)
  • Filsafat Produktif (retorika, estetika, kritik
    sastra)

69
Zaman Yunani KunoAristoteles
  • Karya Aristoteles
  • Logika di dalam Organon
  • kategori, tentang interpretasi, prior analytics
  • posterior analytics, topik, sophistical
    refutations
  • Filsafat Alam
  • tentang langit (meteorologi)
  • fisika (materi dan bentuk atau form)
  • tentang unsur (tanah, air, udara, api)
  • astronomi, geografi, kimia, biologi
  • Psikologi
  • raga dan jiwa (materi dan bentuk)
  • pikiran
  • Metafisika
  • Etika dan Politik
  • Seni dan Retorika

70
  • CATEGORY
  • Category, in logic, a term used to denote
    the several most general or highest types of
    thought forms of entities, or to denote any
    distinction such that, if a form or entity
    belonging to one category is substituted into a
    statement in place of one belonging to another a
    nonsensical assertion must result.
  • The term was used by Aristotle to denote a
    predicate type i.e., the many things that may be
    said (or predicated) of a given subject fall into
    classessuch as quantities, substances,
    relations, and stateswhich Aristotle called
    categories. To the Greeks, the clarification of
    predicate categories helped resolve qu
Write a Comment
User Comments (0)
About PowerShow.com