Title: Bab 3
1Bab 3
- Filsafat dan Ilmu dalam Sejarah
2Orientasi Sejarah
- Hubungan Sejarah
- Filsafat dan ilmu di dalam filsafat ilmu
berhubungan dengan sejarah barat - Berpusat di Eropa, terutama Eropa Barat
- Pembabakan Sejarah
- Sejarah dibagi ke dalam sejumlah babak, dari
zaman dahulu sampai sekarang - Pembabakan sejarah mengikuti pembabakan yang
lazim di sejarah Eropa - Filsafat dan Ilmu
- Di dalam sejarah ini, filsafat dan ilmu tidak
diuraikan secara terpisah
3Pembabakan Zaman
- Zaman Kuno
- sebelum abad ke-5 sM
- Zaman Yunani Kuno
- abad ke-5 sM sampai abad ke-1 sM
- Zaman Romawi
- abad ke-1 sM sampai abad ke-5
- Zaman Gelap (Dark Ages)
- abad ke-5 sampai abad ke-10
- Zaman Pertengahan (Medieval)
- abad ke-10 sampai abad ke-15
- Zaman Kebangkitan (Rennaissance)
- abad ke-15 sampai abad ke-18
- Zaman Modern
- abad ke-18 sampai sekarang
4Zaman KunoSebelum Abad ke-5 sM
- Keteraturan Alam (Louis de Broglie)
- Gembala Chaldea di Mesopotamia memperhatikan
gejala di langit terutama di malam hari - Gerak benda langit teratur sehingga mereka yakin
akan keteraturan alam - Muncul pengetahuan astronomi termasuk kalender
bulan dan muncul ilmu - Mereka juga mengenal musim, sehingga satu tahun
terdiri atas 12 bulan (tidak tepat) - Keteraturan Alam (Dennis Gabor)
- Manusia percaya bahwa ada keteraturan pada dasar
gelaja alam - Keteraturan ini layak dinyatakan melalui logika
- Kepercayaan ini melahirkan ilmu
5- THE HISTORY OF SCIENCE
- On the simplest level, science is knowledge
of the world of nature. There are many
regularities in nature that mankind has had to
recognize for survival since the emergence of
Homo Sapiens as a species. The Sun and the Moon
periodically repeat their movements. Some
motions, like the daily motions of the Sun, are
simple to observe others, like the annual
motion of the Sun, are far more difficult. Both
motions correlate with important terrestial
events. Day and night provide the basic rhythm of
human existence the seasons determine the
migration of animals upon which human depended
for millennia for survival. With the invention of
agriculture, the seasons became even more
crucial, for failure to recognize the proper time
for planting could lead to starvation. Science
defined simply as knowledge of natural processes
is universal among mankind, and it has existed
since the dawn of human existence. - The mere recognition of regularities does
not exhaust the full meaning, however. In the
first place, regularities may be simply
constructs of the human mind. Humans leap to
conclusions the mind cannot tolerate chaos, so
it constructs regularities even when none
objectively exists. Thus, for example, one of the
6- astronomical laws of the Middle Ages was that
the appearance of comets presaged a great
upheaval, as the Norman Conquest of Britain
followed the comet of 1066. True regularities
must be established by detached examinations of
data. Science, therefore, must employ a certain
degree of skepticism to prevent premature
generalization. - Regularities, even when expressed
mathematically as laws of nature, are not fully
satisfactory to everyone. Some insist that
genuine understanding demand explanations of the
causes of the laws, but it is in the realm of
causation that there is the greatest
disagreement. Modern quantum mechanics, for
example, has given up the quest for causation and
today rests only on mathematical expression .
Modern biology, on the other hand, thrives on
causal chains that permit the understanding of
physiological and evolutionary processes in terms
of the physical activities of entities such as
molecules, cells, and organism. But even if
causation and explanation are admitted as
necessary, there is little argument on the kinds
of causes that are permissible, or possible in
science. If the history of science is to make any
sense whatsoever it is necessary to deal with the
past on its own terms, and the fact in that for
most of the history of science natural
philosophers appealed to causes that
7- would be summarily rejected by modern scientists.
Spiritual and divine forces were accepted as both
real and necessary until the end of 18th century
and, in areas such as biology, deep into the 19th
century as well. - Certain conventions governed the appeal to
God or the gods or the spirits, it was held,
could not be completely arbitrary in their
actions otherwise the proper response would be
propitiation, not rational investigation. But
since the deity or deities were themselves
rational, or bound by rational principles, it was
possible for humans to uncover the rational order
of the world. Faith in the world could actually
stimulate original scientific work. Keplers
laws, Newtons absolute space, and Einsteins
rejection of the probabilistic nature of quantum
mechanics were all based on theological, not
scientific, assumptions. For sensitive
interpreters of phenomena, the ultimate
intelligibility of nature has seemed to demand
some rational guiding spirit. A notable
expression on this idea is Einsteins statement
that the wonder is not that mankind comprehends
the world, but that the world is comprehensible. - Science, then is to be considered in this
article as knowledge of natural regularities that
is subjected to some degree of skeptical vigour
and explained by rati-
8- onal causes. One final caution is necessary.
Nature is known only through the senses, of which
sight, touch, and hearing are the dominant ones,
and the human notion of reality is skewed toward
objects of these senses. The invention of such
instruments as the telescope, the microscope, and
the Geiger counter has brought an ever-increasing
range of phenomena with the scope of the senses.
Thus, scientific knowledge of the world is only
partial, and progress of science follows the
ability of humans to make phenomena perceivable.
9Zaman KunoSebelum Abad ke-5 sM
- Keteraturan Alam (di Mesir Kuno)
- Sungai Nil banjir setiap tahun secara teratur
menghapus batas tanah sehingga lahir ilmu ukur
untuk menemukan kembali batas itu - Ilmu ukur digunakan juga untuk membuat piramida
- Secara teratur, gerak naik bintang sothis
(sirius) sinkron dengan siklus banjir sungai Nil,
dan berlangsung setahun sekali - Muncul pengetahuan astronomi dan kalender
matahari di samping kalender bulan - Keteraturan Alam (di Yunani Kuno)
- Pengetahuan dari Mesopotamia dan Mesir Kuno masuk
ke Yunani Kuno
10Zaman KunoSebelum Abad ke-5 sM
- Keteraturan Alam (di Romawi Kuno)
- Sebelum Romawi menjadi negara adikuasa (abad
ke-1 sM), mereka juga menerima kalender dari
Yunani Kuno - Romawi menyusun kalender matahari yang
berubah-ubah yang kemudian distandardisasi oleh
Julius Ceaser - Kalender inilah yang kemudian menjadi kalender
internasional yang kita pergunakan sekarang
(disempurnakan oleh Paus Gregorius) - Keteraturan Alam (Kalender)
- Salah satu pengetahuan astronomi (mungkin tertua)
yang dilahirkan oleh keteraturan alam adalah
kalender - Di samping astronomi, muncul pula pengetahuan
lain yang dikenal sebagai astrologi
11- LUNAR CALENDAR
- Any dating system based on a year consisting of
synodic monthsi.e. complete cycles of phases of
the Moon. In every solar year (or year of the
seasons), there are about 12.37 synodic months.
Therefore, if a lunar-year calendar is to be kept
in step with the seasonal year, a periodic
intercalation (addition) of days is necessary. - The Sumerians were probably the first to develop
a calendar based entirely on the recurrence of
lunar phases. Each Sumero-Babylonian month began
on the first day of visibility of the new Moon.
Although an intercalary month was used
periodically, intercalations were haphazard,
inserted when the royal astrologers realized that
the calendar had fallen severely out of step with
the seasons. Starting about 380 BC, however,
fixed rules regarding intercalations were
established, providing for the distribution of
seven intercalary months at designated intervals
over 19-year periods. Greek astronomers also
devised rules for intercalations to coordinate
the lunar and solar years. It is likely that the
Roman republican calendar was based on the lunar
calendar of the Greeks.
12- Lunar calendars remain in use among certain
religious groups today. The Jewish calendar,
which supposedly dates from 3,760 and three
months before the Christian Era (BCE) is one
example. The Jewish religious year begins in
autumn and consists of 12 months alternating
between 30 and 29 days. It allows for a periodic
leap year and an intercalary month. Another lunar
calendar, the Muslim, dates from the HegiraJuly
15, AD 622, the day on which sthe prophet
Muhammad began his migration from Mecca to
Medina. It makes no effort to keep calendric and
seasonal years together. - SOLAR CALENDAR
- Any dating system based on the seasonal year of
approximately 365¼ days, the time it takes the
earth to revolve once around the Sun. The
Egyptians appear to have been the first to
develop a solar calendar, using as a fixed point
the annual sunrise reappearance of the Dog
StarSirius, or Sothis--in the eastern sky, which
coincided with the annual flooding of the Nile.
They constructed a calendar of 365 days,
consisting of 12
13- months of 30 days each, with a 5 days added at
the years end. The Egyptians failure to account
for the extra fraction of a day, however, caused
their calendar to drift gradually into error. - Ptolemy III Euergetes of Egypt, in the Decree of
Canopus (237 BC), introduced an extra day every
four years to the basic 365-day calendar (this
practice also having been introduced in the
Seleucid calendar adopted in 312 BC). In the
Roman Republic, Julius Ceaser in 45 BC replaced
the confused Roman Republican calendar. Which
probably was based on the lunar calendar of the
Greeks, with the Julian calendar. The Julian
calendar assigned 30 or 31 days to 11 months but
fewer to February it allowed for a leap year
every four years. The Julian calendar, however,
made the solar year slightly too long by adding a
full quarter of day annuallythe solar year
actually runs 365.2422 days. By mid-16th century
the extra time had resulted in an accumulated
error of about 10 days. To correct this error,
Pope Gregory XIII instituted the Gregorian
calendar in 1582, dropping October 5-14 that year
and omitting leap years when they fell on
centurial years not divisible by 400e.g., 1700,
1800, 1900.
14- Penanggalan Romawi mula-mula hanya 10 bulan, dari
Martius sampai December. Oleh kaisar Romawi ke-2,
ditambah 2 bulan pada musim dingin sehingga
menjadi - Martius
- Aprilis
- Maius
- Junius
- Quintilis (Julius)
- Sextilis (Augustus)
- September
- October
- November
- December
- Januarius
- Februarius
- Karena ada upacara pada bulan Januarius, maka
kemudian awal tahun digeser ke Januarius
15- Pada tahun ke-45 sebelum Masehi, penanggalan
Romawai cukup kacau. Julius Ceaser minta
Sosigenes membenahi kalender. - Dasar pembenahan adalah 365 ¼ hari setahun
sehingga setahun 365 hari dan interkalasi 4 tahun
sekali dengan 366 hari. Dimulai tahun 44 sebelum
Masehi sehingga tahun 45 sM menjadi 400 hari
lebih. - Senat menghormati Julius Ceaser dan mengganti
Quintilis menjadi Julius. Pada tahun 4 sM, Senat
menghormati Augustus Ceaser dan mengganti
Sextilis menjadi Augustus. Bulan Julius dan
Augustus dibuat sama 31 hari. - Ternyata setahun mengandung 365 ¼ hari kurang
sedikit sehingga kelebihan. Pada abad ke-16
kelebihan sampai 10 hari. Agar cocok pada tahun
1527, 10 hari itu dihilangkan pada bulan Oktober
(tanggal 5 lompat ke 15) dan selanjutnya setiap
400 tahun dikurangi 3 hari pada tahun ratusan.
16- Penanggalan
- Masehi 1 1 2000
- Hijrah 24 Ramadhan 1420
- Jawa 24 Pasa 1932
- Yahudi 5761
- Koptik 1717
- Ethiopia 1993
- Persia 1379
- Hindu 5101
- Konghucu 25 11 2550
- Jepang 1 1 2660
- Romawi 2753
- Thailand 1 1 - 2543
17- TANGGAL JULIAN DI DALAM KOMPUTER
- Oleh Dali S. Naga
- Abstract. Database management systems uses
Julian date in calculating calendar days. To
understand Julian date, we have to trace it into
the history of our calendar. Our calendar is
based on the movement of the moon and the sun.
Intercalations and cycles are needed to come back
to the previous positions of the moon and the
sun. One of the intercalation and system of
cycle is Julian date. Julian date begins from 1
January 4713, B.C. - Di dalam komputer, seperti pada program
manajemen basis data, tanggal yang digunakan
adalah tanggal Julian. Apa sebenarnya tanggal
Julian itu? Untuk itu, kita perlu menelaah
sejarah kalender yang sekarang kita gunakan.
Namun, sebelumnya, kita perlu membedakan dua hal
yakni kalender dan era. Tanggal kita 2 April,
hari Rabu, jam 12.00 adalah kalender, tetapi
tahun kita 2003 adalah era. Gabungan mereka,
kalender dan era Masehi menghasilkan tanggal 2
April 2003. - Era Masehi
- Era yang digunakan pada penanggalan kita adalah
era Masehi, di samping era lain seperti era
Hijrah, era Saka, dan era Konghucu. Era Masehi
dihitung sejak kelahiran Yesus. Sekalipun
demikian, pada waktu kelahiran Yesus, belum ada
era Masehi. Era Masehi baru kemudian disusun dan
diusulkan oleh seorang rahib bernama Denys le
Petit pada tahun 532 Masehi. Pada waktu itu,
Denys mencoba menghitung mundur untuk menemukan
tanggal lahir Yesus. Menurut hasil hitung Denys,
Yesus lahir pada tanggal 25 Desember, 532 tahun
lalu. Dengan demikian, Denys menetapkan bahwa
era Masehi dimulai pada hari Sabtu, tanggal 1
Januari 532 tahun sebelumnya. - Walaupun Denys le Petit telah menciptakan era
Masehi pada tahun 532, namun era Masehi baru
dipakai di Barat setelah tiga atau empat abad
kemudian. Dengan demikian, era Masehi baru ada di
dalam pemakaian pada abad ke-9 atau ke-10.
Sebelum abad ke-9 atau ke-10, belum ada
penggunaan era Masehi. Selanjutnya, era Masehi
tidak mengenal tahun 0. Di dalam perhitungan
mundur, hanya ada tahun 1 Masehi dan tahun 1
sebelum Masehi. - Kalender
- Kini kita beralih ke kalender. Di dalam
kalender, kita mengenal hari. Kapan suatu hari
dimulai? Ternyata banyak caranya. Ada orang yang
menghitungnya sejak subuh ke subuh, ada orang
yang menghitungnya sejak senja ke senja, ada
orang yang menghitungnya sejak tengah hari ke
tengah hari. Orang Romawi kuno menghitungnya dari
tengah malam ke tengah malam. Tradisi Romawi
inilah yang kita gunakan sekarang pada kalender
kita yakni hari kita dimulai sejak tengah malam
ke tengah malam berikutnya. - Sehari dibagi menjadi 24 jam berasal dari zaman
kuno yakni dari zaman Babylonia. Mereka
menggunakan bilangan Sumeria yakni bilangan yang
berbasis 60. Dari basis 60 inilah ditemukan
bilangan 12 yang masing-masing digunakan untuk
siang dan untuk malam sehingga sehari menjadi 2 x
12 jam 24 jam. Hal ini pun diterima di
mana-mana. Hari kita pada saat ini juga terdiri
atas 2 x 12 jam 24 jam. Satu jam sebanyak 60
menit dan satu menit sebanyak 60 detik juga
berasal dari bilangan berbasis enam puluh
(sexagesimal) yang digunakan oleh orang Sumeria. - Siklus Minggu kita yang 7 hari panjangnya
berasal dari Babylonia dan Yahudi. Di Afrika
Barat, siklus itu adalah 4 hari di Asia Tengah
dan juga di Jawa dikenal siklus 5 hari Mesir
kuno mengenal siklus 10 hari dan Romawi kuno
mengenal siklus 8 hari. Diduga bahwa siklus 7
hari berasal dari penanggalan bulan yakni waktu
selama seperempat bulan. Pengguaan siklus 7 hari
di dalam kalender kita didasarkan atas dekrit
Kaisar Constantine I dan dimulai pada tahun 321
dengan hari Minggu sebagai hari pertama. Di dalam
dekrit Kaisar Constantine I itu, hari Minggu
dinyatakan sebagai hari libur. Dan libur Minggu
itu masih terus kita gunakan sampai sekarang. - Bulan merupakan satu bagian dari kalender.
Perhitungan bulan dilakukan melalui fasa bulan.
Perhitungan bulan menimbulkan masalah karena satu
bulan terdiri atas 29 hari lebih sekian jam, pada
hal jumlah hari di dalam bulan adalah bulat.
Demikian pula dengan tahun. Satu tahun matahari
terdiri atas 365 hari lebih sekian jam, pada hal
jumlah hari di dalam setahun adalah bulat.
Akibatnya, pada ulang bulan, kedudukan bulan
tidak tepat sama seperti kedudukannya pada bulan
lalu. Pada ulang tahun, kedudukan matahari tidak
tepat sama seperti kedudukannya pada tahun lalu. - Untuk menyelesaikan masalah sekian jam yang lebih
pada setiap bulan dan pada setiap tahun, maka
pada bulan dan tahun tertentu diberikan tambahan
hari. Hal ini dikenal sebagai interkalasi.
Interkalasi merupakan hal yang cukup rumit di
dalam kalender. Tidak mudah untuk menemukan
interikalasi yang menyebabkan kedudukan bulan
atau matahari tepat kembali sama seperti pada
waktu sebelumnya. - Kalender Romawi
- Kita tinggalkan dulu interkalasi ini dan
menengok ke sejarah kalender kita. Kalender kita
berasal dari kalender Romawi kuno. Konon
kabarnya, kalender Romawi kuno ditetapkan oleh
raja pertamanya pada abad ke-7 atau ke-8 sebelum
Masehi. Pada ketentuan raja Romulus ini, awal
tahun dimulai pada bulan Martius dan diakhiri
pada bulan December (desi 10). Panjang tahun
adalah 10 bulan. Setiap bulan terdiri atas 30
atau 31 hari sehingga di dalam setahun terdapat
304 hari. Setelah itu terdapat celah musim dingin
yang tidak ada kalendernya. - Raja kedua Numa Pompilius membagi celah musim
dingin itu menjadi dua bulan yakni bulan
Januarius dan Februarius. Dua bulan tambahan
sebanyak 50 hari ini diletakkan di akhir tahun
sehingga di dalam setahun terdapat 354 hari.
Kemudian pada bulan Januarius ditambahkan satu
hari lagi sehingga di dalam setahun terdapat 355
hari. - Raja kelima Tarquinius Priscus (616 579 sM)
adalah orang Etruscan. Kalender diubah menjadi
kalender republik. Pada kalender republik ini,
Februarius 28 hari Martius, Maius, Julius (waktu
itu masih bernama Quintilis), dan October,
masing-masing 31 hari serta Januarius, Aprilis,
Junius, Augustus (waktu itu masih bernama
Sextilis), dan December, masing-masing 29 hari.
Di dalam setahun terdapat 355 hari. Raja ini juga
memindahkan awal tahun ke bulan Januarius namun
pada tahun 510 sM, melalui pengusiran orang
Estrucan, awal tahun dikembalikan ke bulan Maret. - Pada setiap akhir tahun, orang Romawi melakukan
pembayaran upah. Sering upah berkenaan dengan
pekerjaan di dalam musim yang dipengaruhi oleh
kedudukan matahari. Namun dengan 355 hari
setahun, kedudukan matahari bergeser dari akhir
tahun ke akhir tahun. Karena itu orang Romawi
menambahkan 22 dan 23 hari selang-seling pada
setiap dua tahun, dan tambahan diselipkan di
antara tanggal 23 dan 24 Februarius. Dengan
demikian, setiap empat tahun terdapat 1465 hari
atau rerata di dalam setahun terdapat 366,25
hari. - Julius Ceaser memanggil Sosigenes untuk membenahi
kalender. Sosigenes menggunakan tahun dengan
365,25 hari. Pada tahun 46 sM, Sosigenes
menambah 67 hari ke dalam kalender sehingga pada
tahun itu terdapat 445 hari. Mulai tahun 45 sM,
Romawi menggunakan kalender baru yakni tahun
dimulai pada tanggal 1 Januarius. Bulan
Januarius, Martius, Maius, Quintilis (Juli),
September, November terdiri atas 31 hari. Bulan
Aprilis, Junius, Sextilis (Agustus), October, dan
December terdiri atas 30 hari. Bulan Februarius
terdiri atas 29 hari. Di dalam setahun terdapat
365 hari. Dan setiap empat tahun, di antara
tanggal 23 dan 24 Februari ditambah satu hari.
18(No Transcript)
19(No Transcript)
20- Tanggal Julian (tahun 1583 oleh Joseph Justus
Scaliger) - Menggabungkan tiga siklus interkalasi
- 19 x 15 x 28 7980 tahun
- Titik temu terakhir pada tahun 4713 sM
- Patokan tanggaln Julian 1 Januari 4713 sM sebagai
tanggal 1 (dimulai tengah hari) - 2 Oktober 2004 2 454 178
21Zaman KunoSebelum Abad ke-5 sM
- Keteraturan Alam (Ramuan Bahan)
- Keteraturan alam lainnya terdapat pada ramuan
bahan (material, logam, obat) - Mereka menjadi ilmu bahan dan farmasi
- Di samping ilmu bahan dan farmasi, terdapat pula
ramuan bercampur kepercayaan dan mistik yang
dikenal sebagai alkemi - Keteraturan Alam (Pengobatan)
- Keteraturan alam juga terdapat pada pengobatan
orang sakit - Mereka menjadi tabib dan dukun
- Di samping itu, terdapat pula kepercayaan dan
mistik yang dikenal sebagai tenung
22Zaman KunoSebelum Abad ke-5 sM
- Keteraturan Alam (Pertukangan)
- Keteraturan alam lainnya adalah pembuatan alat
- Mereka dikenal sebagai pertukangan
- Salah satu kegiatan arkeologi adalah mencari
karya pertukangan pada zaman purbakala - Tenung
- Merupakan kekuatan gaib yang dapat menyembuhkan
atau menyakitkan orang - Sekalipun tidak ada dasar ilmiahnya, sampai
sekarang pun, kalangan tertentu masih percaya
akan kekuatan tenung (guna-guna)
23Zaman KunoSebelum Abad ke-5 sM
- Astrologi
- Di samping astronomi, muncul juga pengetahuan
lain yang dikenal sebagai astrologi - Menurut astrologi, dunia bintang-bintang adalah
makrokosmos dan dunia manusia adalah mikrokosmos - Mikrokosmos adalah refleksi dari makrokosmos
sehingga nasib manusia dapat diramal dari gejala
bintang-bintang di langit - Jam dan tanggal lahir menjadi patokan untuk
ramalan nasib manusia - Peranan Astrologi
- Peranan astrologi melampau batas zaman kuno
- Sampai sekarang pun masih muncul ramalan
astrologi di dalam majalah
24- ASTROLOGY
- Astrology is the type of divination that
consists in interpreting the influence of planets
and the stars on earthly affairs in order ot
predict the destinies of individuals, groups, or
nations. At times regarded as science, astrology
has exerted an extensive or a peripheral
influence in many civilizations, both ancient and
modern. Astrology has also been defined as a
pseudoscience and considered to diametrically
opposed to the theories and findings of modern
science. - Astrology originated in Mesopotamia, perhaps in
the 3rd millenium BC, but attained its full
development in the Western world much later,
within the orbit of Greek civilization of the
Hellenistic period. It spread to India in its
older Mesopotamian form. Islamic culture absorbed
it as part of the Greek heritage and in the
Middle Ages, when Western Europe was strongly
affected by Islamic science, European astrology
also felt the influence of the Orient. - The Egyptian also contributed though less
25- directly, to the rise of astrology. They
constructed a calendar, containing 12 months of
30 days each with five days added at the end of
the year, that was subsequently taken over by the
Greeks as a standard of reference for
astronomical observations. In order that the
starry sky might serve them as a clock, the
Egyptians selected a successian of 36 bright
stars whose risings were separated from each
other by intervals of 10 days. Each of these
stars, called decans by Latin writers, was
conceived of as a spirit with power over the
period of time for which it served they later
centered the zodiac as subdivisions of its 12
signs. - In pre-Imperial China, the belief in an
intelligible cosmic order, comprehended aspects
of which would permit influences on correlated
incomprehended aspects, found expression in
correlation charts that juxtaposed natural
phenomena with the activities and the fate of
man. The transition from the belief to a truly
astrological belief in the direct influence of
the stars on human affairs was slow, and numerous
systems of observation and strains of lore
developed. When Western astronomy and astrology
became known in China through Arabic influence in
26- Mongol times, their data were also integrated
into the Chinese astrological corpus. In the
later centuries of Imperial China it was
universal practice to have a horoscope case for
each newborn child and at all decisive junctures
in life. - Once established in the classical world, the
astrological conception of causation invaded the
sciences particularly medicine and allied
disciplines. The Stoics, espousing the doctrine
of a universal sympathy linking microcosm of
man with the macrocosm of nature, found in
astrology a virtual map of such a universe. - Greek astrology was slow to be absorbed by the
Romans, who had their own native methods of
divination, but by the times of Augustus, the art
had resumed its original role as a royal
prerogative. Attempts to stress its influence on
the populace met repeatedly with failure. - Throughout pagan antiquity the words astronomy
and astrology had been synonymous in the first
Christian centuries the modern distinction
between astronomy, the science of stars, began to
appear. As against the omnipotence of the stars,
Christianity
27- taught the omnipotence of their Creator. To the
determinism of astrology Christianity opposed the
freedom of the will. But within these limits the
astrological worldview was accepted. To reject it
would have been to reject the whole heritage of
classical culture, which had assumed an
astrological complexion. Even at the centre of
Christian history, Persian magi were reported to
have followed a celestial omen to the scene of
the Nativity. - Although various Christian councils condemned
astrology the belief in the worldview it implies
was not seriously shaken. In the late European
Middle Ages, a number of universities, among them
Paris, Padua, Bologna, and Florence, had chairs
of astrology. The revival of ancient studies by
the humanists only encouraged this interest,
which persisted into the Renaissance and even
into the Reformation. - It was Copernican revolution of the 16th century
that dealt with the geocentric worldview of
astrology its shattering blow. As a popular
pastime or superstition, however, astrology
continued into modern times to engage the
attention of millions of people.
28Zaman KunoSebelum Abad ke-5 sM
- Alkemi
- Di samping ramuan bahan secara alamiah, muncul
kepercayaan dan mistik berkenaan dengan ramuan
bahan itu - Ramuan dengan kepercayaan seperti ini dikenal
sebagai alkemi - Alkemi bertujuan untuk membuat emas dari bahan
murah serta membuat obat panjang umur yang
membuat orang tidak mati - Ada alkemi yang hanya rajin menulis melalui sandi
rahasia serta ada alkemi yang rajin meramu bahan - Peranan Alkemi
- Peranan alkemi melampaui batas zaman kuno
- Mereka baru hilang pada zaman modern (abad ke-18
dan ke-19)
29Zaman KunoSebelum Abad ke-5 sM
- Asas Determinisme Universal
- Ada keteraturan alam yang ditemukan oleh manusia
- Ada kepastian tentang keteraturan alam itu
- Mereka menjadi suatu asas yakni asas determinisme
universal - Asas ini dikenal sejak Zaman Kuno dan terus
berlangsung sampai sekarrang - Asas determinisme universal menjadi dasar untuk
menemukan dan mengembangkan ilmu - Asas Indeterminisme
- Dikenal sebagai uncertainty principle, ditemukan
oleh Heisenberg pada tahun 1928 - Bertentangan dengan asas determinisme universal,
tetapi hanya berlaku di fisika partikel subatomik
dan dalam ukuran yang sangat kecil
30Zaman Yunani Kuno5 sM sampai 1 sM
- Kebudayaan Yunani
- Zaman ini merupakan zaman emas Yunani Kuno
- Budaya berkembang ke arah kecendekiaan
- Sekalipun Yunani Kuno mengenal dewa dan dewi,
pemikiran mereka tidak melibatkan dewa dewi itu - Di zaman itu lahir filsafat dan demokrasi dan
sangat berpengaruh terhadap kebudayaan barat
sampai sekarang - Babakan
- Zaman pra-Sokrates
- Zaman Sokrates
- Zaman pasca-Sokrates
31Zaman Yunani Kuno5 sM sampai 1 sM
- Zaman Pra-Sokrates
- Ada tiga pemikiran besar pada zaman itu yang
dibicarakan di sini - Unsur dasar pembentuk alam dan bentuk alam
- Alam tunggal dan alam jamak
- Realitas bilangan
- Zaman Sokrates (Sokrates, Plato, Aristoteles)
- Dialog
- Metafisika dan epistemologi
- Logika
- Etika dan estetika
- Zaman Pasca-Sokrates
- Stoik, Epikurus, Cynics, dan Skeptik
32 - Greece
- Greece, officially called Hellenic Republic
(Greek ???????? ??µ???at?a Eliniki Dhimokratia),
is a country in the southeast of Europe on the
southern tip of the Balkan peninsula. - The historical name of Greece in Greek is ?????
Ellas. This name is also written Hellas in
English, following the ancient Greek
pronunciation. More commonly, it is called ????da
Elladha in modern Greek. The mythical ancestor of
the Greek is the eponymous Hellen. - The name of Greece in European languages
(English Greece, French Grèce, Portuguese
Grécia, Spanish and Italian Grecia, German
Griechenland, Russian ??????, etc) comes from a
different root G?a???? Graik?s (via Latin
Graecus) which according to Aristotle was an
ancient name of the Greeks. On the other hand,
the name of Greece in some Middle Eastern and
Eastern languages (Turkish Yunanistan, Arabic
(tulisan Arab Yunan), Hebrew (tulisan Hebrew),
ancient Persian Yauná, Indian Pali Yona, Malay
and Indonesian Yunani) derives from the Greek
toponym ????a Ionia. Norwegian is one of the few
languages apart from Greek in which the name
Hellas predominates. -
-
33- THE HELLENISTIC WORLD
- The history of the Greek-speaking world in
antiquity may be divided into three periods that
of the free City States, which was brought to an
end by Philip and Alexander that of the
Macedonian domination, of which the last remnant
was extinguished by the Roman annexation of Egypt
after the death of Cleopatra and finally that of
the Roman Empire. Of these three periods, the
first is characterized by freedom and disorder,
and the second by subjection and disorder, the
third by subjection and order. - The second of these periods is known as the
Hellenistic age. In science and mathematics, the
work done during this period is the best ever
achieved by the Greeks. In philosophy, it
includes the foundation of the Epicurean and
Stoic schools, and also of scepticism as a
definitely formulated doctrine it is therefore
still important philosophically, though less so
than the period of Plato and Aristotle. After the
third century BC, there is nothing really new in
Greek philosophy until the Neoplatonists in the
third century AD. But meanwhile the Roman world
was being prepared for the victory of
Christianity. ... - After Alexanders death, there was an
attempt to preserve the unity of his empire. But
of his two sons,
34- one was an infant and the other was not yet born.
Each had supporters, but in the resultant civil
war both were thrust aside. In the end, his
empire was divided between the families of three
generals, of whom, roughly speaking one obtained
the European, one the African, and one the
Asiatic parts of Alexanders possessions. The
European part fell ultimately to Antigonuss
descendants Ptolemy, who obtained Egypt, made
Alexandria his capital Seleucus, who obtained
Asia after many wars, was too busy with campaigns
to have a fixed capital, but at later times
Antioch was the chief city of his dynasty. - From the point of view of Hellenistic
culture, the most brilliant success of the third
century BC was the city of Alexandria. Egypt was
less exposed to war than the European and Asiatic
parts of the Macedonian domain, and Alexandria
was in extraordinarily favoured position for
commerce. The Ptolemies were patrons of learning,
and attracted to their capital many of the best
men of the age. Mathematics became, and remained
until the fall of Rome, mainly Alexandrian
from Bertrand Russell, History of Western
Philosophy
35Zaman Yunani KunoPra-Sokrates Unsur Alam
- Unsur Dasar Alam
- Menurut Thales dari Miletus ( 624 sM - 546 sM)
adalah air - Menurut Anaximenes ( 570 sM - 500 sM) adalah
udara - Menurut Xenophanes ( 570 sM - 480 sM) adalah
tanah - Menurut Heraklitus ( 540 sM - 475 sM) adalah
api - Menurut Empedokles ( 490 sM - 430 sM) adalah
kombinasi dari air, udara, tanah, dan api - Sifat Dasar Unsur
- panas dan dingin
- kering dan basah
36- THALES OF MILETUS
- Thales of Miletus (fl. 6th century BC),
philosopher remembered for his cosmology based on
water as the essence of all matter. According to
the Greek thinker Apollodorus, he was born in
624 the Greek historian Diogenes Laeritus placed
his death in the 58th Olympiad (548-545) at the
age of 78. - No writings by Thales survive, and no
contemporary sources exist thus, his achievement
are difficult to assess. Inclusion of his name
in the canon of legendary Seven Wise Men led to
his idealization, and numerous acts and sayings,
many of them no doubt spurious, were attributed
to him. According to Herodotus, Thales was a
practical statesman who advocated the federation
of Ionian cities of the Aegian region. The Greek
scholar Callimachus recorded a traditional belief
that Thales advised navigators to steer by the
Little Bear (Ursa Minor) rather than by the Great
Bear (Ursa Major), both prominent constellation
in the north.
37- He is also said to have used his knowledge of
geometry to measure the Egyptian pyramids and to
calculate the distance from the shore of ships at
sea. Although such stories are probably
apocryphal, they illustrate Thales reputation.
The Greek writer Xenophanes claimed that Thales
predicted the solar eclipse that stopped the
battle between the Lydian Alyattes and the Median
Cyaxares, evidently on May 48, 585. Modern
scholars believe, however, that he could not
possibly have had the knowledge to predict
accurately either the locality or the character
of an eclipse. Thus, his feat was apparently
isolated and only approximate Herodotus spoke of
his foretelling the year only. That the eclipse
was nearly total and occurred during a crucial
battle probably contributed considerably to his
exaggerated reputation as an astronomer. - In geometry Thales has been credited with the
discovery of five theorems (1) that a circle is
bisected by its diameter, (2) that angles at the
base of a triangle having two sides of equal
length are equal, (3) the opposite angles of
intersecting straight lines are equal, (4) that
the angle inscribed in a semicircle is a right
angle, and (5) that a triangle is determined if
its base and the angles relative to the base are
given. His mathematical achievements are
difficult o assess, however, because of the
ancient practice of crediting particular
discoveries to men with a general reputation for
wisdom.
38- The claim that Thales was the founder of a
European philosophy rests primarily on Aristotle,
who wrote that Thales was the first to suggest a
single material substratum for the
universenamely, water, or moisture. Even though
Thales as philosopher renounced mythology, his
choice of water as the fundamental building block
of matter had its precedent in tradition. A
likely consideration in this choice was the
seeming motion that water exhibits, as seen in
its ability to become vapour for what changes or
moves itself was thought by the Greeks to be
close to life itself. To Thales the entire
universe is a living organism, nourished by
exhalations from water. - Thales significance lies in his choice of water
as the essential substance than in his attempt to
explain nature by the simplification of phenomena
and in his search for causes within nature itself
rather than in the caprices of anthropomorphic
gods. Like his successors Anaximander and
Anaximenes, Thales is important in bridging the
worlds of myth and reason.
39Zaman Yunani KunoPra-Sokrates Unsur Alam
- Letak Unsur
- Tanah
- di tengah alam, benda jatuh karena kembali ke
letak asal - Air
- di tepi tanah, air keluar dari tanah melalui
mata air karena kembali ke letak asal - udara
- di tepi air, udara di dalam air bergelembung
naik karena kembali ke letak asal - api
- di tepi udara, dalam bentuk kilat di langit
- Unsur kelima (quintessential)
- unsur pembentuk benda langit, unsur sempurna
40Zaman Yunani KunoPra-Sokrates Unsur Alam
- Sifat Unsur
- tanah kering dingin
- air basah dingin
- udara basah panas
- api kering panas
- Benda
- Benda merupakan kombinasi dari keempat unsur
beserta sifat mereka - Asumsi
- Unsur alam beserta sifatnya ini dijadikan asumsi
di dalam pengetahuan kemudian
41Zaman Yunani KunoPra-Sokrates Unsur Alam
42Zaman Yunani KunoPra-Sokrates Unsur Alam
- Bentuk Alam
- Menurut Anaximander ( 610 sM - 546 sM) dari
Miletus langit berentuk bola serta permukaan bumi
melengkung dan berbentuk silinder dengan sumbu
timur-barat - Menurut Anaximenes dari Miletus, bumi berbentuk
meja bundar (cakram) - Menurut Pythagoras, bumi berbentuk bola
- Alam
- alam terdiri atas substansi dan bentuk
- Peta Zaman Kuno
- Timur (orient) terletak di atas
- Membaca peta, perlu mencari letak timur dulu
- Pencarian letak timur (orient) adalah orientasi
43Zaman Yunani KunoPra-Sokrates Wujud Alam
- Paham Alam Tunggal (Monisme)
- Realitas alam adalah tunggal walaupun tampak
jamak - Tidak ada celah
- Tidak terbagi
- Tiada gerakan (statis)
- Penganut perguruan Elea yang dipimpin oleh
Parmenides
44Zaman Yunani KunoPra-Sokrates Wujud Alam
- Paham Alam Jamak (Pluralisme)
- Realitas alam adalah jamah (banyak)
- Ada celah
- Terbagi
- Ada gerakan (dinamis)
- Penganut Heraklitus dan Empedokles
45Zaman Yunani KunoPra-Sokrates Wujud Alam
- Perguruan Elea
- Dipimpin oleh Parmenides
- Pengikut terkenal adalah Zeno dari Elea
- Menganut alam tunggal (monisme)
- Heraklitus
- Mengagumi api yang bergerak dan air yang
mengalir - Ucapan terkenal panta rhei semua mengalir
- Menganut alam jamak
- Empedokles
- Substansi alam terus bergerak, berpadu melalui
kasih, dan bercerai melalui benci, berulang-ulang
terjadi secara periodik - Menganut alam jamak
46- PARMENIDES
- Parmenides (b. c. 515 BC), Greek philosopher of
Elea in southern Italy who founded Eleaticism,
one of the leading per-Socratic schools of Greek
thought. His general teaching has been diligently
reconstructed from the few surviving fragments of
his principal work, a lengthy three-part verse
composition titled On Nature. - Parmenides held that the multiplicity of
existing things, their changing forms and motion,
are but an appearance of a single eternal reality
(Being), thus giving rise to the Parmenidian
principle that all is one. From this concept of
Being, he went on to say that all claims of
change or or bob-Being are illogical. Because he
introduced the method of basing claims about
appearances on a logical concept of Being, he is
considered one of the founders of metaphysics. - Platos dialogue the Parmenides deals with his
thought. An English translation of his work was
edited by L. Taran (1965).
47Zaman Yunani KunoPra-Sokrates Wujud Alam
- Paradoks Zeno
- Zeno dari Elea (penganut paham alam tunggal)
membantah paham alam jamak melalui empat paradoks - Paradoks dikotomi
- Paradoks Achilles
- Paradoks panah
- Paradoks stadion
- Cara
- Menggunakan paham alam jamak (terbagi) dan
menunjukkan ketidaklogisan
48Zaman Yunani KunoPra-Sokrates Wujud Alam
- Paradoks Dikotomi
- Dari titik A bergerak menuju ke titik B
- Kalau jarak ini terbagi (paham jamak) maka jalan
itu dibagi dua - Setelah tiba di tengah jalan, sisa jalan dibagi
dua lagi - Setelah mencapai titik tengahnya, sisa jalan
dibagi dua lagi - Demikian seterusnya, sehingga kita tidak mungkin
tiba di B
A
B
49Zaman Yunani KunoPra-Sokrates Wujud Alam
- Paradoks Achilles
- Achilles adalah dewa Yunani yang larinya
tercepat kura-kura adalah hewan yang jalannya
paling lambat - Achilles ingin menyusul kura-kura yang sudah
lebih dahulu berjalan - Setiap kali Achilles tiba ke tempat kura-kura,
sang kura-kura sudah maju sedikit - Demikian seterusnya, sehingga Achilles tidak
mungkin melewati kura-kura - Bahkan menurut paradoks dikotomi, Achilles tidak
mungkin mencapai tempat kura-kura
Achilles
Kura-kura
50Zaman Yunani KunoPra-Sokrates Wujud Alam
- Teori Atom
- Leucippus dan Democritos muncul dengan teori atom
( a tomos tidak terpenggal) - Menurut mereka segala sesuatu memiliki bagian
terkecil berupa atom - Segala sesuatu itu meliputi benda dan bukan benda
(berbeda dengan atom unsur di kimia) - Benda kayu, batu, air bukan benda api, jiwa,
perasaan, pikiran - Ada atom kasar seperti atom api ada atom halus
(eidola) seperti atom jiwa (psyche) - Pemenggalan sesuatu akan terhenti pada atom
- Tampaknya teori atom ini dapat menjawab paradoks
Zeno
51Zaman Yunani KunoPra-Sokrates Bilangan
- Perguruan Pythagoras
- Kita mengenal dalil Pythagoras di geometri
(sebelum Pythagoras, dalil ini sudah dikenal) - Sebenarnya, banyak hal yang dikemukakan oleh
Perguruan Pythagoras, dan kesemuanya berkenaan
dengan bilangan - Paham Pythagoras
- Segala sesuatu duduk di atas bilangan dan dapat
dinyatakan dalam bilangan - Perguruan Pythagoras menemukan berbagai sifat
bilangan - Tugas ahli filsafat, menurut perguruan
Pythagoras, adalah mencari bilangan itu
52- PYTHAGOREAN PHILOSOPHY
- Although much of the tradition about Pythagorean
philosophy is confused because of dissensions
within the school and on account of intermixture
of later speculation with earlier doctrine, yet
some of the chief principles are quite clear.
Pythagorass discoveries in musical theory, such
as that the basic musical harmonies depend on
very simple numerical ratios between the
dimensions of the instruments (such as strings,
pipes, disks) producing them, let him interpret
the world as a whole through numbers. The
discovery was the basis for the Pythagorean
theory of numbers, of which the systematic study
induced the intense Pythagorean devotion to
mathematics and the subsequent development of
this science by Greek scientists. Pythagoras
taught that number is the fundamental part of the
worlds framework. According to his theory that
the dominant note of the universe are proportion,
order, and harmony. All three are expressible by
numerical relations. Pythagoreans thus considered
that the universes essential character is
number, but they went beyond this by asserting
that the world is made of numbersa doctrine that
is the core of Pythagorean
53- philosophy. In preaching this principle the
Pythagoreans both propounded several semi
mystical speculations and discovered more
scientific truths. - On the speculative side occurs the celebrated
Pythagorean table of opposites, derived from
their proposition that the universe is composed
of pairs of contradictories. The pairs are 10 in
number (1) limited and unlimited (2) odd and
even (3) one and many (4) right and left (5)
masculine and feminine (6) rest and motion (7)
straight and crooked (8) light and darkness (9)
good and evil (10) square and oblong. Though
this theory may not be so fantastic as it
appears, the Pythagorean development of numbers
was quite arbitrary in the following proposition.
The number 1 is the point, 2 is the line, 3 is
the plane, 4 is the solid, 5 is physical
qualities, 6 is animation, 7 is intelligence and
health, 8 is love, friendship, wisdom.
Identification of different numbers with
different things exemplifies no principle. The
Pythagoreans themselves disagreed on what number
should be assigned to what things. Thus, since
justice is that which returns equal for equal,
the only numbers which do this are square
numbers thus 4 equals 2 into 2 and so returns
equal for
54- for equal thus 4 must be justice. But since 9 is
equally square of 3, 9 also can represent
justice. Such speculation seems sterile, save to
numerologists. - Among the Pythagorean achievements in science
were - (1) The Pythagorean theorem, reliably reported
to have been discovered by Pythagoras, to whose
speculation was owed also, quite probably, most
of the first book of Euclids Stoicheaia
(Elements) on geometry. - (2) By 500 BC the earth sphericity was
proclaimed by Pythagoreans, who were among the
first, if not the first, to teach it. - (3) Hippasus (fl. 450 BC) discovered
incommensurability and elaborated a theory of
proportions applicable to incommensurables. - (4) By 400 BC the Pythagoreans taught the theory
that the earth, sun, and moon, planets, and fixed
stars revolve around a central firea denial of
the earlier and later geocentric view of the
universe and an anticipation of Nicolaus
Copernicus heliocentric hypothesis announced in
1543. From this theory they
55- developed the doctrine of the music of the
spheres, which lasted into modern times. - (5) Archytas of Tarentum (fl. 360 BC)
developed a very advanced theory of acoustics and
founded mechanics. - (6) At an undetermined date Pythagoreans
developed the theory of mathematical means and
they also invented the theory of polygonal
numbers. - Pythagorean ethics consisted in ascetics
practice. Happiness was the perfection of the
souls virtue, which was a kind of harmony. The
process of purification of the soul was
accomplished by metemorsychosis, the
transmigration of the soul, a theory imported by
Pythagoreans from the Orient and one of their
most characteristic dogmas.
56Zaman Yunani KunoPra-Sokrates Bilangan
- Harmoni
- Pythagoras menemukan bahwa nada dapat dinyatakan
dengan rasio panjang kawat yang menghasilkan
nada (1 ¾ 2/3 ½ ) atau (12 9 8 6) - oktaf (diaspason) 12 6 fourth (diatessaron) 8
6 fifth (diapente) 12 8 - Rasio ini dinamakan harmoni
- Menurut mereka, jarak benda langit ke bumi juga
memiliki rasio harmonis (music of the sphere) - Menurut mereka, tubuh manusia sehat memiliki tone
yang harmonis sakit berarti tone tidak harmonis
lagi, diobati dengan tonikum
57Zaman Yunani KunoPra-Sokrates Bilangan
- Arti Bilangan
- 1 titik penalaran
- 2 garis pendapat
- 3 bidang
- 4 bentuk ruang keadilan
- 5 kualitas fisik perkawinan
- 6 animasi semangat
- 7 inteligensi kesehatan
- 8 cinta persahabatan kearifan
- 9 keadilan
- Genap Ganjil
- Bilangan genap (artios) tidak disukai karena
mudah terbagi/pecah - Bilangan ganjil (perissos) disukai karena tidak
mudah terbagi/pecah
58Zaman Yunani KunoPra-Sokrates Bilangan
- Bilangan 10
- Bilangan 10 adalah ideal karena 1 2 3 4
10 - Ada 10 pasang lawanan
- terbatas lawan tak terbatas
- ganjil lawan genap
- satu lawan banyak
- kanan lawan kiri
- lelaki lawan perempuan
- diam lawan gerak
- lurus lawan bengkok
- terang lawan gelap
- baik lawan jahat
- bujur sangkar lawan lonjong
59Zaman Yunani KunoPra-Sokrates Bilangan
- Bilangan dan Gambar
- Bilangan bulat bilangan segi tiga
- Bilangan ganjil bilangan bujur sangkar
- Bilangan genap bilangan persegi panjang
- Bilangan segi lima
- Bilangan kubik
- Number and Figure
- Di dalam bahasa Inggris figure dapat diartikan
number atau bilangan rupanya dari sini - Bilangan Irasional
- Bilangan ?2, ?3 membingungkan perguruan ini
karena tidak dapat dinyatakan sebagai rasio dua
bilangan bulat
60Zaman Yunani KunoPra-Sokrates Bilangan
61- THE SQUARE ROOT OF TWO
- The square root of 2, which was the first
irrational to be discovered, was known to the
early Pythagoreans, and ingenious methods of
approximating to its value was discovered. The
best was as follows Form two columns of numbers,
which we will call the as and the bs each
starts with 1. The next a, at each stage, is
formed by adding the last a and b already
obtained the next b is formed by adding twice
the previous a to the previous b. The first 6
pairs so obtained are (1,1), (2,3), (5,7),
(12,17), (29,41), (70,99). In each pair, 2a2?b2
is 1 or ?1. Thus b/a is nearly the square root of
two, and at each fresh step it gets nearer. For
instance, the reader may satisfy himself that the
square of 99/70 is very nearly equal to 2. from
Bertrand Russell, History of Western Philosophy -
- (a, b), (a, b),
- a a b
- b 2a b ? b/a
62Zaman Yunani KunoPra-Sokrates Bilangan
- Sifat Bilangan
- Bilangan sempurna
- jumlah faktor bilangan
- mis. 1 2 3 6
- 1 2 4 7 14 28
- Bilangan berkekurangan
- jumlah faktor lt bilangan
- mis. 1 2 4 lt 8
- Bilangan berlimpahan
- jumlah faktor gt bilangan
- mis. 1 2 3 4 6 gt 12
- Bilangan bersahabat
- jumlah faktor bilangan bilangan sahabatnya
- mis. 1245101120224455110284
- 12471142220
63Zaman Yunani KunoPra-Sokrates Protagoras
- Protagoras (c. 500 sM)
- Menyatakan dirinya sebagai sophist
- Tidak mendirikan perguruan, menerima bayaran dari
jasa mengajar - Ukuran
- Menurut Protagoras, manusia adalah ukuran dari
semua benda, tentang benda yang ada dan tentang
benda yang tidak ada - Akibatnya, menurut orang yang satu, benda adalah
seperti ini, tetapi menurut orang yang lain, bisa
lain lagi - Baik dan benar
- Sesuatu bisa lebih baik tetapi belum tentu lebih
benar
64Zaman Yunani KunoSokrates
- Perguruan
- Sokrates adalah guru dari Plato
- Plato adalah guru dari Aristoteles
- Sokrates, Plato, Aristoteles adalah tiga ahli
filsafat yang terkenal dari zaman Yunani Kuno - Setelah Aristoteles, Yunani ditaklukkan oleh
Alexander, dan mengalami kemunduran - Kegiatan Sokrates ( 470 sM - 399 sM)
- Memiliki perguruan
- Tidak menulis buku karyanya terdapat di dalam
tulisan Plato - Ikut dalam politik sehingga dihukum mati pada
tahun 399 sM - Merintis metoda dialog
- Filsafat moral dan hipotesis
65Zaman Yunani KunoPlato
- Perguruan
- Memberi pelajaran di taman Akademon di pinggir
kota Athena - Dikenal sebagai Perguruan Akademia (asal usul
dari kata akademik) dari 387 sM sampai 529 - Perguruan Akademia
- Akademia tua oleh Plato (387 sM), diteruskan
oleh pengikutnya (dan kemanakan) Speusippus,
Xenokrates dari Khalkedon, Polemon dari Athena,
Krates - Akademia pertengahan diteruskan oleh Arkesilaus
(316 - 241 sM) - Akademia baru oleh Kameades (214?sM - 129 sM)
- Dibubarkan oleh Kaisar Justinian pada tahun 529
66Zaman Yunani KunoPlato
- Kegiatan Plato ( 427 sM - 347 sM)
- Meninggalkan banyak karya paling terkenal adalah
Dialogue - Merintis teori bentuk (form, ide) yakni bentuk
umum (universal) dari sesuatu seperti kursi,
biru, buku, pohon - Diduga bahwa bentuk umum ini ada di dalam ide,
maka dikenal juga sebagai ide - Berkarya juga di bidang epistemologi, logika,
etika, hukum, metoda dialektika (dialog) - Paham tentang Pengetahuan
- Menganut paham tunggal dari Parmenides, terutama
tentang ketidakubahan pengetahuan - Benda berubah tetapi bentuk tidak berubah
pengetahuan harus melalui bentuk atau ide yang
tidak berubah
67Zaman Yunani KunoAristoteles
- Perguruan
- Memberi pelajaran sambil berjalan-jalan
(peripatetik) di taman Lyceum - Dikenal sebagai Perguruan Lyceum
- Karena mengajar sambil berjalan-jalan, anggota
perguruan ini dikenal sebagai Peripatetik - Pernah memberi pelajaran kepada anak Raja yang
kemudian menjadi Alexander Agung - Kegiatan Aristoteles (384 sM - 322 sM)
- Meninggalkan banyak sekali karya
- Merintis logika, terutama silogisme
- Merintis kategori substansi, kuantitas,
kualitas, relasi, tempat, waktu, posisi, status,
aksi, kepasifan (terkena aksi) - Terkenal dengan metoda induksi dan deduksi, serta
teleologi
68Zaman Yunani KunoAristoteles
- Kegiatan Ilmiah
- Sebagai anak dokter, ia banyak menelaah alam
terutama biologi dan psikologi - Tidak sepaham dengan Plato tentang bentuk (ide)
Plato bentuk sebelum materi, Aristotles bentuk di
dalam materi - Bidang Karya Aristoteles
- Dari karya yang masih dapat ditemukan, karya
Aristoteles dapat dikelompokkan ke dalam beberapa
bidang - Filsafat teoretik atau spekulatif (teologi,
fisik, metafisika, biopsikologi) - Filsafat Praktis (etika dan ilmu politik)
- Filsafat Produktif (retorika, estetika, kritik
sastra)
69Zaman Yunani KunoAristoteles
- Karya Aristoteles
- Logika di dalam Organon
- kategori, tentang interpretasi, prior analytics
- posterior analytics, topik, sophistical
refutations - Filsafat Alam
- tentang langit (meteorologi)
- fisika (materi dan bentuk atau form)
- tentang unsur (tanah, air, udara, api)
- astronomi, geografi, kimia, biologi
- Psikologi
- raga dan jiwa (materi dan bentuk)
- pikiran
- Metafisika
- Etika dan Politik
- Seni dan Retorika
70- CATEGORY
- Category, in logic, a term used to denote
the several most general or highest types of
thought forms of entities, or to denote any
distinction such that, if a form or entity
belonging to one category is substituted into a
statement in place of one belonging to another a
nonsensical assertion must result. - The term was used by Aristotle to denote a
predicate type i.e., the many things that may be
said (or predicated) of a given subject fall into
classessuch as quantities, substances,
relations, and stateswhich Aristotle called
categories. To the Greeks, the clarification of
predicate categories helped resolve qu