Title: 2. Magnetic Instabilities
12. Magnetic Instabilities -- Types of magnetic
phase boundaries
2Ranges of magnetic order detection (34 examples)
Sereni, J Phys Soc Jpn 67 (1998) 1767
3Sorting magnetic phase boundaries
Sereni, J.Phys.Soc.Jpn, 70 (2001) 2139
Type III TN nearly constant
Type II TN vanishes at finite temperature
Type I TN,C tarced down to 10 of TN,C (x 0)
4Comparison of ordering temperature dependences
Ligand-doping
Magnetic field
Pressure
Inter-ligand substitution
J.Phys.Soc.Jpn, 70 (2001) 2139
52a. Physical properties of Type III systems
Exaempleary system hexagonal CePd2-xNixAl3
Sereni et al., PRB (2004) accepted Cond. Mat.
0303154-March 5.2004
6(No Transcript)
7Lattice parameters
doping pressure
Inter-atomic distances
Ce -T spacing expands Ce -Al spacing contracts
For Ce-ligands spacing criteria see
Sereni et al., JMMM 140 (1995) 885. Handb.
Phys. Chem. RE, Vol 15, Ch 98 (1991)
8 High temperature properties T gtgtTN T ?CF
(crystal field splitting)
9Magnetic Susceptibility
10Crystal field Effects
Crystal Field Effect TK
11Comparison between pressure and alloying effects
12Scale of energy related to T?max (x, p) Measured
resistance
R(T) l/s ?o ?(T/?E) ?ph(T)
?E intensive parameter, better computed
from maximum curvature than T?max Best fit
R(T) Ro L tanh(T/?tgh) Rph(T)
Sereni et al., Cond. Mat. 0303154 - March
5th.2004
13Comparison between concentration and pressure
dependence
14 Low temperature properties T TN (magn.
Order) T ltlt ?CF
15Fermi Liquid (FL) vs Non-Fermi Liquid (NFL)
Conduction electron (Fermi gas - Sommerfeld)
Cel / T ? ?o ? ?ensity of states(?F) ? f (T)
(TltltT F) ?o ? ?o (Pauli susc.) ? ?A ( A
?/T2) Heavy quasiparticles (Fermi Liquid) Cel /
T f (T) ?(T) ? ?T (density of excitations) ?
?ensity of states(?F) ?(T?0) ? ? (T?0) ? ?A
(TltltTK) ? ?(T?0) Wilson ratio
Kadowaky-Woods First order corrections Cel / T ?
1- (T/To)2 ? ? 1 (T/To)2 ? ? A T 2 NFL
behavior Cel / T ?(T) ?T ? Logarithmic (Cel
/ T ? - Ln T) divergences ?(Cel / T)/ ?T ? 1/T
divergence ? Analytical Cel / T ?
1- ? T divergences No divergence in the Entropy
(S?Cp/T dT ) for T?0 ! ?(T) ? divergent for T?0
?(T) ? T Q (1.5 lt Q lt 2) or ? A (T) T 2
16Expected behavior for 3D Antiferromagnetic
systems
17Pressure dependence of the exponent
? T n
18Comparison between two concentrations
19Magneto resistence
Scaling with field
20Specific Heat at the LR-MO region
For x lt 0.2 T lt TN Cm / T ?0BT 2 B Jex
For x gt 0.2 broad maximum
21Specific Heat at the critical concentration
Const.
?T scale
Cm / T ? ? - a?T
22 Normalized Entropy
Sereni Physica B 320 (2002) 376
T-scaling
23Phase Diagram combining x and p
24Conclusions for CePd2-x Nix Al3
- Three regions in the magnetic phase diagram
- 0 lt x lt 0.2 LR-MO (TN nearly independent of x
) - 0.2 lt x lt 0.45 SR-Corr coexistence with NFL
behavior ? Cm / T ? ?o (1 - ?T/D) D 18K - x 0.45 critical concentration
- 0.4 lt x lt 0.9, exponent of ? ? T Q ? 1lt Q lt 2
- x 0.9 onset of Fermi Liquid behavior (Q 2)
252b. Physical properties of Type II systems
(pressure induced superconductors)
26Also for CePd2Si2 CeCu2 CeInGa3
Evanescent phase boundaries (Type II )
Rev.Esp de Fisica
Sereni, J.Phys.Soc.Jpn 70 (2001) 2139
27Hydrostatical pressure
x2
28CeCu2Si2 has a shaped superconducting phase
similar to pure Ce
? ?
? 6 9 12
15 Pure Ce
Wittig PRL 21 (1968) 1250
Holmes et al., PRB 69 (2004) 024508
29Proof for LR-Order evanescence
TN ? temp of ?(?T)/?Tmax does not extrapolate to
0
30Specific Heat of type-II systems
There is an entropy compensation respect to
Cp/T (T gtgt TN), extrapolated from the
paramagnetic state
31Comparison of transition involving band states
ZrCe2
NpSn3
Pure itinerant magnetism Ref
Superconductor Sereni et al. Phill Mag Lett 68
(1993) 231
32Entropy compensation
Magnetic free energy gain
33(No Transcript)
34Spin Density Waves ordering in
heavy fermion (narrow band) systems
35SDW formed by nesting of quasi-particle (HF) bands
1 0.97 0.95
Takeuchi et al., JJAP Ser.11 (1999) 151
36Further example
1
10
37Conclusions
Magnetic Instabilities may have different origins
LR-magnetic order may vanish at finite
temperature (not necessarily at T 0)
LR order may be due to localized moments
interaction or to SDW effect
In pressure induced superconductors, TN,C (p)
phase boundary vanishes at finite temperature