Title: Diapositive 1
1High-order harmonics from plasma mirrors basic
mechanisms and properties
F.Quéré SPAM, CEA Saclay, France
Experimental HHG spectrum from plasma mirror
2High-order harmonics from plasma mirrors basic
mechanisms and properties
C.Thaury, H. George, F.Quéré, M.Bougeard, P.
Monot, Ph. Martin SPAM, CEA Saclay, France
J.P. Geindre, P. Audebert LULI, Ecole
Polytechnique, France
R. Marjoribanks University of Toronto, Physics
Department, Canada
Two PIC codes are used
EUTERPE (1D and boosted frame), developed by
G.Bonnaud (CEA/SPAM) CALDER (1D to 3D), developed
by E. Lefebvre (CEA/DAM)
3HHG from plasma mirrors
Igt few 1015 W/cm2 _at_800 nm
Optically-polished Solid target
l/10
ncme0wL2/e2 nc1.7 1021 cm-3 _at_ 800 nm
4Outline
- 1- Basic mechanismsCoherent Wake Emission
(CWE)Relativistic Oscillating Mirror (ROM)
2- Experimental evidenceFrom a few 1015 W/cm2 to
1019 W/cm2
3- Phase properties of individual harmonicsROM
? CWE
5Basic mechanisms
What do we learn from PIC simulations ?
6Physics of HHG from plasma mirrors
PIC Simulation- Euterpe code
Density80.nc Short (non-vanishing) density
gradient I6.1017 W/cm2 , P-polarized
F.Quéré et al, Phys. Rev. Lett. 96 (2006)
7Two mechanims are involved
PIC Simulation- Euterpe code
Density80.nc Short (non-vanishing) density
gradient I6.1017 W/cm2 , P-polarized
F.Quéré et al, Phys. Rev. Lett. 96 (2006)
8Two mechanims are involved
- Relativistic Oscillating Mirror
- Doppler effect
Bulanov et al, Phys. Plasmas 1 (1994)
Lichters et al, Phys. Plasmas 3 (1996) Baeva et
al, Phys. Rev. E 74 (2006)
9Two mechanims are involved
Density gradient
Position x (in l)
Hom. plasma
10Two mechanims are involved
- Relativistic Oscillating Mirror
- Doppler effect
Bulanov et al, Phys. Plasmas 1 (1994)
Lichters et al, Phys. Plasmas 3 (1996) Baeva et
al, Phys. Rev. E 74 (2006)
- Coherent Wake Emission
- Plasma oscillations
Quéré et al, PRL 96 (2006)
???
Brunel PRL 59, 52 (1987)
11Two mechanims are involved
- Relativistic Oscillating Mirror
- Doppler effect
Bulanov et al, Phys. Plasmas 1 (1994)
Lichters et al, Phys. Plasmas 3 (1996) Baeva et
al, Phys. Rev. E 74 (2006)
- Coherent Wake Emission
- Plasma oscillations
Quéré et al, PRL 96 (2006)
Brunel PRL 59, 52 (1987)
12Strong analogy of CWE with Recollision mechanism
in atomic or molecular HHG !!!
13Experimental evidence
How do we distinguish these two mechanisms
experimentally ?
14Coherent Wake Emission (1)
CWE Spectral extension max. plasma frequency a
(max. plasma density)1/2
15Coherent Wake Emission (2)
CWE (quasi) linear generation process
CWE signal f (a02) from PIC
Simulations (fixed ions)
16Coherent Wake Emission (2)
CWE (quasi) linear generation process
Harmonic generation on a 1 TW-50 fs Ti-Sa laser
system
Experimental results
F.Quéré et al, Phys. Rev. Lett. 96, 125004 (2006)
17Compressor
Double plasma mirror on a 10 TW-60 fs Ti-Sa
laser 70 TW-20 fs by 2008
DPM chamber
Experimental chamber
18After the double plasma mirror
Overall transmission of DPM 50 Duration and
wavefront unaltered
300 mJ 1010 contrast
Experimental results
19Relativistic Oscillating Mirror (1)
Silica - 3.10 18 W/cm2
Plastic - 8.10 18 W/cm2
Plastic - 3.10 18 W/cm2
Thaury et al, Nature Physics 3 (2007)
20Relativistic Oscillating Mirror (1b)
I3.1018 W/cm2 I8.1018 W/cm2
10-10 contrast Plastic target (wp/wL?15)
Signal (unit. arb.)
Harmonic order
Experimental results
Thaury et al, Nature Physics 3 (2007)
21PIC simulations
PIC simulations reveal a difference in spectral
width between CWE and ROM harmonics
Why? See part 3
Thaury et al, Nature Physics 3 (2007)
22Relativistic Oscillating Mirror (2)
Experimental results
Thaury et al, Nature Physics 3 (2007)
23Intrinsic phase of harmonics from PMs
24Emission time of CWE attosecond pulses
25Emission time of ROM attosecond pulses
26Harmonics intrinsic phase time domain point of
view
Deviations from perfect periodicity lead to
spectral broadening and non-trivial spectral phase
Pulse train
Harmonic order
27Relevant electron trajectories.
in CWE
I2 gt I1
in ROM
?
28Controlling the phase properties of harmonics
Fourier-transform limited
Positively Chirped
Negatively chirped
Fourier-transform limited
CWE
jT jin.jL
29Effect of the chip of the incident laser pulse on
CWE
F.Quéré et al, submitted
See also F.Quéré et al Phys. Rev. Lett. 96,
125004 (2006)
30How to measure the spatial profile ?
Grazing incidence 800 nm AR coating
MCP
10 n15
Laser beam diaphragmed to 30 mm E75 mJ
Dq 14 mrad
Thaury et al, Nature Physics 3 (2007)
31Intrinsic phase in CWE spatial aspects
F.Quéré et al, submitted
32Conclusion
- Two generation mechanisms
- for steep density gradients (i.e. sub-ps laser
pulses) - Coherent Wake Emission
- Relativistic Oscillating Mirror
Coherent processes
Spectral and spatial properties can be
coherently controlled through the driving laser
phase
The big experimental challenge How to measure
these attosecond (zepto ?) pulses ?
New challenge for attosecond metrology
33Attosecond measurement Non-linear
autocorrelation by two-photon ionization of He
34Experimental results
35Source properties pulse energy, CWE
MAXIMUM CWE efficiency in PIC simulations
10-4-10-5
Measured energies
I 3.1017 W/cm2 Elaser300 mJ Silica
Energy/harm (µJ)
Conversion efficiency
G.Doumy PhD thesis, Saclay, 2006
Harmonic order
36Coherent Wake Emission
37Effect of the chip of the incident laser pulse
F.Quéré et al, Phys. Rev. Lett. 96, 125004 (2006)
Experimental results
38Distorsions of the reflected waveform
Coherent Wake Emission (CWE)
Relativistic oscillating Mirror (ROM)
I2.1018 W/cm2 - 8nc
I8.1016 W/cm2 - 110 nc
Magnetic field Bz
0
1
2
0
1
2
Time (optical periods)
Time (optical periods)
39Latest results and future directions
40Coherence properties in CWE regime
Experimental result
Harmonic beam (10 n15)
C.Thaury et al, in preparation
41Coherence properties in CWE regime
Laser at focus (measured)
42Coherence properties in CWE regime
43Zooming on CWE, again
Attosecond pulses
Brunel electron bunches
44Two mechanims are involved
45Zooming on CWE
Attosecond pulses
Density gradient
Hom. plasma
Charge density ne-Zni
46Intrinsic phase in CWE experimental evidence
jT jin.jL
I
t or r
- Laser phase jL can be controlled by
- Chirping the laser pulse (temporal phase)
- Moving the best focus (spatial phase)
- Minimizing jT leads to
- Temporally
- minimum spectral width
-
- Spatially
- minimum divergence