Title: Ian Thomas
1???????????????????????? Ian Thomas
?????????????? ??????????????
??????????????????
The Fourier transform
www.univ-tln.fr
2???????????????????????? Ian Thomas
?????????????? ??????????????
??????????????????
The Fourier transform has many applications.
http//www.intmath.com/Fourier/6_linesp.php
http//www.arahne.si/tutorial22.html
http//www3.ocn.ne.jp/hanbei/eng-f80spec.html
3???????????????????????? Ian Thomas
?????????????? ??????????????
??????????????????
http//btc.montana.edu/messenger/instruments/mascs
.htm
And more applications.
http//mediabyran.kib.ki.se/projects/cns/mri/mri-p
ictures/complete.jpg
4???????????????????????? Ian Thomas
?????????????? ??????????????
??????????????????
The meaning of the Fourier transform
A
f0
t
f
3f0
f0
-f0
3f0
-3f0
-5f0
5f0
5f0
A function is split up into its frequency
components by the Fourier transform.
5???????????????????????? Ian Thomas
?????????????? ??????????????
??????????????????
Waveforms consist of harmonics of the fundamental
added together.
Waveadd
6???????????????????????? Ian Thomas
?????????????? ??????????????
??????????????????
The Fourier transform is reversible.
7???????????????????????? Ian Thomas
?????????????? ??????????????
??????????????????
An example of a function and its Fourier
transform.
8???????????????????????? Ian Thomas
?????????????? ??????????????
??????????????????
9???????????????????????? Ian Thomas
?????????????? ??????????????
??????????????????
F(u)
u
Re(F(u)) Im(F(u))
u
10???????????????????????? Ian Thomas
?????????????? ??????????????
??????????????????
A function in two dimensions
11???????????????????????? Ian Thomas
?????????????? ??????????????
??????????????????
Fourier Transform in 2 Dimensions
12???????????????????????? Ian Thomas
?????????????? ??????????????
??????????????????
Some examples of Fourier transforms in 2
dimensions
13???????????????????????? Ian Thomas
?????????????? ??????????????
??????????????????
Two-dimensional Fourier transform pairs
Image
Power spectrum
14???????????????????????? Ian Thomas
?????????????? ??????????????
??????????????????
Two-dimensional Fourier transform pairs
Image
Power spectrum
15???????????????????????? Ian Thomas
?????????????? ??????????????
??????????????????
Properties of the Fourier Transform for Image
Processing
http//www.ph.tn.tudelft.nl/Courses/FIP/noframes/f
ip-Properti-2.html
16???????????????????????? Ian Thomas
?????????????? ??????????????
??????????????????
The Fourier transform can be written in terms of
its magnitude and phase.
A(u,v)
a(x,y)
17???????????????????????? Ian Thomas
?????????????? ??????????????
??????????????????
You cannot reconstruct an image from the
magnitude of its FT, but you can from the phase
of its FT
Reconstructed from phase
Reconstructed from magnitude
18???????????????????????? Ian Thomas
?????????????? ??????????????
??????????????????
The FT and the Inverse FT are linear operations.
Image
g(x,y)
f(x,y)
f(x,y) g(x,y)
Power spectrum
19???????????????????????? Ian Thomas
?????????????? ??????????????
??????????????????
If you expand the image, its Fourier Transform
gets smaller.
A(u,v)
a(x,y)
20???????????????????????? Ian Thomas
?????????????? ??????????????
??????????????????
If you rotate and image, its FT rotates too.
21???????????????????????? Ian Thomas
?????????????? ??????????????
??????????????????
The mean of an image is the value a(0,0).
Mean(a(x,y))
22???????????????????????? Ian Thomas
?????????????? ??????????????
??????????????????
You can measure the energy of an image in either
normal space or spatial frequency space
(Parsevals Theorem).
23???????????????????????? Ian Thomas
?????????????? ??????????????
??????????????????
You can differentiate using the FT.
24???????????????????????? Ian Thomas
?????????????? ??????????????
??????????????????
You can shift the FT by multiplying the image by
a phase term.
25???????????????????????? Ian Thomas
?????????????? ??????????????
??????????????????
Convolution in one domain is equivalent to
multiplication in the other.
Spatial domain
Spatial frequency domain