Developmental models - PowerPoint PPT Presentation

About This Presentation
Title:

Developmental models

Description:

genetic factor models. Pj = h Gj c Cj e Ej. common pathway. independent pathway ... Dutch IQ data (209 twin pairs) tested at ages 5, 7, 10 and 12 years ... – PowerPoint PPT presentation

Number of Views:46
Avg rating:3.0/5.0
Slides: 25
Provided by: caroline106
Category:

less

Transcript and Presenter's Notes

Title: Developmental models


1
Developmental models
2
Multivariate analysis
  • choleski models
  • factor models
  • y ? f u
  • genetic factor models
  • Pj h Gj c Cj e Ej
  • common pathway
  • independent pathway

3
Repeated measures
  • developmental models
  • simplex models
  • growth models

4
Structural Equation Model
  • measurement model
  • relations between latent and observed variables
  • y ? f u
  • structural equation model
  • relations among the latent variables
  • f B f z

5
Longitudinal simplex pattern
  • correlations fall away as time between occasions
    increase
  • time 1 2 3 4 5
  • time 1 1
  • time 2 .69 1
  • time 3 .44 .74 1
  • time 4 .35 .61 .76 1
  • time 5 .25 .44 .57 .73 1

6
Simplex model
  • first-order auto-regressive process
  • each latent variable is influenced by the
    preceding latent variable
  • ft bt ft-1 zt
  • b autoregressive coefficient
  • z innovation

7
Path diagram
  • units of measurement in the latent variables are
    the same as in the observed variables
  • yi fi ui and fi bi fi-1 zi

8
First order autoregression(B matrix)
  • regression coefficients (b2 to b4)
  • 0 0 0 0
  • b2 0 0 0
  • 0 b3 0 0
  • 0 0 b4 0
  • no regression coefficient for time 1 (b1)

9
Translation into Mx
  • measurement model Y F U
  • structural model F B F Z
  • F B F Z, therefore
  • F - B F Z, therefore
  • (I - B) F Z, therefore
  • F (I - B)-1 Z
  • Y (I - B)-1 Z U

10
Covariance structure
  • Y (I - B)-1 Z U
  • Covariance (Y)
  • (I-B)-1 var(Z) ((I-B)-1 ) var(U)
  • B contains autoregressive coefficients
  • Z contains innovations
  • U contains error variances
  • I is identity matrix

11
Mx Longitudinal IQ data (4 ages)
  • in baal\simplex
  • 6 rectangular datafiles (raw data)
  • iq4all.rec N 209 pairs
  • iq4mzm/dzm/mzf/dzf/dos.rec
  • missing -1
  • 8 variables
  • t1iq5 t1iq7 t1iq10 t1iq12 t2iq5 t2iq7 t2iq10
    t2iq12

12
Dutch IQ data (209 twin pairs)
  • tested at ages 5, 7, 10 and 12 years
  • not all twins participated at every occasion!
  • missing values fit models to raw data
  • stability (subdiagtwin1, superdiagtwin2)
  • 5 7 10 12
  • 5 1 .57 .62 .53
  • 7 .70 1 .70 .61
  • 10 .68 .73 1 .69
  • 12 .65 .67 .76 1

13
2 Mx jobs
  • 1factor Pfact4iq.mx
  • simplex Psimp4iq.mx
  • input file iq4all.rec

14
output variances
  • ft bt ft-1 zt
  • var(f t) bt2 var(f t-1 ) var(zt )
  • variance of latent factor (twin 1)
  • time 1 var(f1) var(z1) 11.62 134.1
  • time 2 var(f2) 1.12134.1 4.62 162.2
  • variance of observed variable (twin 1)
  • time 1 var(f1) var(u1) 134.1 50.6 184.7
  • time 2 var(f2) var(u2) 162.2 50.6 212.8

15
output covariances
  • cov(f t , f t-1) btvar(f t-1 )
  • cov (f2,f3) 1.0 162.2 162.2
  • cov (f3,f4) 0.8 189.0 151.2
  • cov(f t , f t-2) bt bt-1 var(f t-1 )
  • cov (f1,f3) 1.0 1.1 134.1 147.5

16
output correlations
  • cor(f t , f t-1) cov(f t ,f t-1)/?var(f t
    )?var(f t-1)
  • cor (f2,f3) 162.2 / ?162.2 ?189.0 0.93
  • cor (f3,f4) 151.2 / ?189.0 ?115.8 1.00
  • cor (f1,f3) 147.5 / ?134.1 ?189.0 0.93

17
Extension to genetic designs
  • For each source of variation (G, E and C (not
    shown here)) a simplex structure is specified

18
parameters of the model
  • variances of latent factors (G, C and E) at t0
  • variances of innovations at tgt0
  • autoregressive coefficients (transmission)
  • variances of measurement errors

19
Genetic simplex model
  • G(t) bg(t) G(t-1) zg(t)
  • E(t) be(t) E(t-1) ze(t)
  • C(t) bc(t) C(t-1) zc(t)
  • Variances of latent variables
  • var(G(t)) bg(t)2 var(G(t-1)) var(zg(t))
  • var(E(t)) be(t)2 var(E(t-1)) var(ze(t))
  • var(C(t)) bc(t)2 var(C(t-1)) var(zc(t))

20
specifications
  • var(G1) var(zg(1)) (innovation)
  • var(G(t)) bg(t)2 var(G(t-1)) var(zg(t))
  • cov(G(t),G(t-1)) bg(t)var(G(t-1))

21
Covariance matrix
  • (t3, no measurement error)
  • Genetic covariance
  • Var(G1)
  • bg2var(G1) Var(G2)
  • bg2bg3var(G1) bg3var(G2) Var(G3)
  • Environmental covariance
  • Var(E1)
  • be2var(E1) Var(E2)
  • be2be3var(E1) be3var(E2) Var(E3)

22
To Mx!
  • in baal\simplex 5 datafiles iq4mzm/dzm/mzf/dzf/
    dos.rec
  • 8 variables (missing -1)
  • t1iq5 t1iq7 t1iq10 t1iq12 t2iq5 t2iq7 t2iq10
    t2iq12
  • Mx job guess.mx incomplete!
  • For ages 5, 7 and 10 years only
  • Full of mistakes
  • fix, run for 3 ages, then adjust and run for 4
    ages.

23
Twin correlations (N)
  • 5 7
    10 12
  • MZM .77 (42) .56 (37) .73 (38) .87
    (30)
  • DZM .53 (43) .41 (41) .54 (41) .62
    (33)
  • MZF .77 (47) .78 (42) .87 (43) .87
    (36)
  • DZF .73 (37) .50 (34) .46 (37) .60
    (31)
  • DOS .65 (39) .56 (38) .50 (37) .24
    (34)

24
Structure MX job
  • 3 groups to specify the genetic, unique
    environmental and common environmental simplex
    structures
  • 2 data groups to describe the MZ and DZ
    covariance matrices
  • MZ GCE GC _ GC GCE /
  • DZ GCE 0.5_at_GC _ 0.5_at_GC GCE /
Write a Comment
User Comments (0)
About PowerShow.com