Title: Pascals Triangle
1Pascals Triangle
21
31
1
1
41
1
1
2
51
1
1
2
1
1
61
1
1
2
1
1
3
71
1
1
2
1
1
3
3
81
1
1
2
1
1
3
3
1
1
91
1
1
2
1
1
3
3
1
1
4
101
1
1
2
1
1
3
3
1
1
4
4
111
1
1
2
1
1
3
3
1
1
4
4
6
121
1
1
2
1
1
3
3
1
1
4
4
6
1
1
131
1
1
2
1
1
3
3
1
1
4
4
6
1
1
5
141
1
1
2
1
1
3
3
1
1
4
4
6
1
1
5
5
151
1
1
2
1
1
3
3
1
1
4
4
6
1
1
5
5
10
161
1
1
2
1
1
3
3
1
1
4
4
6
1
1
5
5
10
10
171
1
1
2
1
1
3
3
1
1
4
4
6
1
1
5
5
10
10
1
1
181
1
1
2
1
1
3
3
1
1
4
4
6
1
1
5
5
10
10
1
1
6
191
1
1
2
1
1
3
3
1
1
4
4
6
1
1
5
5
10
10
1
1
6
6
201
1
1
2
1
1
3
3
1
1
4
4
6
1
1
5
5
10
10
1
1
6
6
15
211
1
1
2
1
1
3
3
1
1
4
4
6
1
1
5
5
10
10
1
1
6
6
15
15
221
1
1
2
1
1
3
3
1
1
4
4
6
1
1
5
5
10
10
1
1
6
6
15
15
20
231
1
1
2
1
1
3
3
1
1
4
4
6
1
1
5
5
10
10
1
1
6
6
15
15
20
1
1
241
1
1
2
1
1
3
3
1
1
4
4
6
1
1
5
5
10
10
1
1
6
6
15
15
20
1
1
This pattern continues forever.
25Pascals Triangle is filled with patterns.
1
1
1
2
1
1
3
3
1
1
4
4
6
1
1
5
5
10
10
1
1
6
6
15
15
20
1
1
26Increasing by one.
1
1
1
2
1
1
3
3
1
1
4
4
6
1
1
5
5
10
10
1
1
6
6
15
15
20
1
1
27Increasing by 2, then 3, then 4, then 5.
1
1
1
2
1
1
3
3
1
1
4
4
6
1
1
5
5
10
10
1
1
6
6
15
15
20
1
1
28Increasing by 3, then 6, then 10, then 15.
1
1
1
2
1
1
3
3
1
1
4
4
6
1
1
5
5
10
10
1
1
6
6
15
15
20
1
1
29Pascals Triangle also has symmetry.
1
1
1
2
1
1
3
3
1
1
4
4
6
1
1
5
5
10
10
1
1
6
6
15
15
20
1
1
30Some patterns are not very obvious.
1
1
1
2
1
1
3
3
1
1
4
4
6
1
1
5
5
10
10
1
1
6
6
15
15
20
1
1
31Some patterns are not very obvious.
1
1
1
2
1
1
3
3
1
1
4
4
6
1
1
5
5
10
10
1
1
6
6
15
15
20
1
1
32Calculate the sum of each row.
1
1
1
2
1
1
3
3
1
1
4
4
6
1
1
5
5
10
10
1
1
6
6
15
15
20
1
1
33Calculate the sum of each row.
1
1
ROW 1
1
1
2
1
1
3
3
1
1
4
4
6
1
1
5
5
10
10
1
1
6
6
15
15
20
1
1
34Calculate the sum of each row.
1
1
ROW 1
1
1
ROW 2
2
2
1
1
3
3
1
1
4
4
6
1
1
5
5
10
10
1
1
6
6
15
15
20
1
1
35Calculate the sum of each row.
1
1
ROW 1
1
1
ROW 2
2
2
1
1
ROW 3
4
3
3
1
1
4
4
6
1
1
5
5
10
10
1
1
6
6
15
15
20
1
1
36Calculate the sum of each row.
1
ROW 1
1
1
1
ROW 2
2
2
1
1
ROW 3
4
8
3
3
1
1
ROW 4
4
4
6
1
1
5
5
10
10
1
1
6
6
15
15
20
1
1
37Calculate the sum of each row.
1
ROW 1
1
1
1
ROW 2
2
2
1
1
ROW 3
4
8
3
3
1
1
ROW 4
4
4
6
1
1
ROW 5
16
5
5
10
10
1
1
6
6
15
15
20
1
1
38Lets chart our findings.
1
ROW 1
1
1
1
ROW 2
2
2
1
1
ROW 3
4
8
3
3
1
1
ROW 4
4
4
6
1
1
ROW 5
16
5
5
10
10
1
1
ROW 6
32
6
6
15
15
20
1
1
39Lets chart our findings.
40The sum of a particular row is double the sum of
the previous row.
X 2
41Each sum can be written as the product of twos.
42Each sum can be written as the product of twos.
43Expressions that multiply the same number over
and over again can be written using exponents.
44Expressions that multiply the same number over
and over again can be written using exponents.
45Expressions that multiply the same number over
and over again can be written using exponents.
46Expressions that multiply the same number over
and over again can be written using exponents.
47Expressions that multiply the same number over
and over again can be written using exponents.
48Expressions that multiply the same number over
and over again can be written using exponents.
49What is the exponential expression that equals 1 ?
50What is the exponential expression that equals 1 ?
51What is the exponential expression that equals 1 ?
Any base raised to the power of zero is always 1.
52Check out this cool website for more patterns
within Pascals Triangle.http//www.shodor.org/in
teractivate/activities/pascal1/index.html
53THE END!