Title: EXPONENTS
1EXPONENTS
2Recall Pascals Triangle
1
3Recall Pascals Triangle
1
1
1
4Recall Pascals Triangle
1
1
1
2
5Recall Pascals Triangle
1
1
1
2
1
1
6Recall Pascals Triangle
1
1
1
2
1
1
3
7Recall Pascals Triangle
1
1
1
2
1
1
3
3
8Recall Pascals Triangle
1
1
1
2
1
1
3
3
1
1
9Recall Pascals Triangle
1
1
1
2
1
1
3
3
1
1
4
10Recall Pascals Triangle
1
1
1
2
1
1
3
3
1
1
4
4
11Recall Pascals Triangle
1
1
1
2
1
1
3
3
1
1
4
4
6
12Recall Pascals Triangle
1
1
1
2
1
1
3
3
1
1
4
4
6
1
1
13Recall Pascals Triangle
1
1
1
2
1
1
3
3
1
1
4
4
6
1
1
5
14Recall Pascals Triangle
1
1
1
2
1
1
3
3
1
1
4
4
6
1
1
5
5
15Recall Pascals Triangle
1
1
1
2
1
1
3
3
1
1
4
4
6
1
1
5
5
10
16Recall Pascals Triangle
1
1
1
2
1
1
3
3
1
1
4
4
6
1
1
5
5
10
10
17Recall Pascals Triangle
1
1
1
2
1
1
3
3
1
1
4
4
6
1
1
5
5
10
10
1
1
18Recall Pascals Triangle
1
1
1
2
1
1
3
3
1
1
4
4
6
1
1
5
5
10
10
1
1
6
19Recall Pascals Triangle
1
1
1
2
1
1
3
3
1
1
4
4
6
1
1
5
5
10
10
1
1
6
6
20Recall Pascals Triangle
1
1
1
2
1
1
3
3
1
1
4
4
6
1
1
5
5
10
10
1
1
6
6
15
21Recall Pascals Triangle
1
1
1
2
1
1
3
3
1
1
4
4
6
1
1
5
5
10
10
1
1
6
6
15
15
22Recall Pascals Triangle
1
1
1
2
1
1
3
3
1
1
4
4
6
1
1
5
5
10
10
1
1
6
6
15
15
20
23Recall Pascals Triangle
1
1
1
2
1
1
3
3
1
1
4
4
6
1
1
5
5
10
10
1
1
6
6
15
15
20
1
1
241
1
1
2
1
1
3
3
1
1
4
4
6
1
1
5
5
10
10
1
1
6
6
15
15
20
1
1
This pattern continues forever.
25Pascals Triangle is filled with patterns.
1
1
1
2
1
1
3
3
1
1
4
4
6
1
1
5
5
10
10
1
1
6
6
15
15
20
1
1
26Increasing by one.
1
1
1
2
1
1
3
3
1
1
4
4
6
1
1
5
5
10
10
1
1
6
6
15
15
20
1
1
27Increasing by 2, then 3, then 4, then 5.
1
1
1
2
1
1
3
3
1
1
4
4
6
1
1
5
5
10
10
1
1
6
6
15
15
20
1
1
28Increasing by 3, then 6, then 10, then 15.
1
1
1
2
1
1
3
3
1
1
4
4
6
1
1
5
5
10
10
1
1
6
6
15
15
20
1
1
29Pascals Triangle also has symmetry.
1
1
1
2
1
1
3
3
1
1
4
4
6
1
1
5
5
10
10
1
1
6
6
15
15
20
1
1
30Some patterns are not very obvious.
1
1
1
2
1
1
3
3
1
1
4
4
6
1
1
5
5
10
10
1
1
6
6
15
15
20
1
1
31Some patterns are not very obvious.
1
1
1
2
1
1
3
3
1
1
4
4
6
1
1
5
5
10
10
1
1
6
6
15
15
20
1
1
32Calculate the sum of each row.
1
1
1
2
1
1
3
3
1
1
4
4
6
1
1
5
5
10
10
1
1
6
6
15
15
20
1
1
33Calculate the sum of each row.
1
1
ROW 1
1
1
2
1
1
3
3
1
1
4
4
6
1
1
5
5
10
10
1
1
6
6
15
15
20
1
1
34Calculate the sum of each row.
1
1
ROW 1
1
1
ROW 2
2
2
1
1
3
3
1
1
4
4
6
1
1
5
5
10
10
1
1
6
6
15
15
20
1
1
35Calculate the sum of each row.
1
1
ROW 1
1
1
ROW 2
2
2
1
1
ROW 3
4
3
3
1
1
4
4
6
1
1
5
5
10
10
1
1
6
6
15
15
20
1
1
36Calculate the sum of each row.
1
ROW 1
1
1
1
ROW 2
2
2
1
1
ROW 3
4
8
3
3
1
1
ROW 4
4
4
6
1
1
5
5
10
10
1
1
6
6
15
15
20
1
1
37Calculate the sum of each row.
1
ROW 1
1
1
1
ROW 2
2
2
1
1
ROW 3
4
8
3
3
1
1
ROW 4
4
4
6
1
1
ROW 5
16
5
5
10
10
1
1
6
6
15
15
20
1
1
38Lets chart our findings.
1
ROW 1
1
1
1
ROW 2
2
2
1
1
ROW 3
4
8
3
3
1
1
ROW 4
4
4
6
1
1
ROW 5
16
5
5
10
10
1
1
ROW 6
32
6
6
15
15
20
1
1
39Lets chart our findings.
40The sum of a particular row is double the sum of
the previous row.
X 2
41Each sum can be written as the product of twos.
42Each sum can be written as the product of twos.
43Expressions that multiply the same number over
and over again can be written using exponents.
44Expressions that multiply the same number over
and over again can be written using exponents.
45Expressions that multiply the same number over
and over again can be written using exponents.
46Expressions that multiply the same number over
and over again can be written using exponents.
47Expressions that multiply the same number over
and over again can be written using exponents.
48Expressions that multiply the same number over
and over again can be written using exponents.
49What is the exponential expression that equals 1 ?
50What is the exponential expression that equals 1 ?
51What is the exponential expression that equals 1 ?
Any base raised to the power of zero is always 1.
52Every exponential expression has a base and an
exponent.
3 is the exponent.
5
3
53Every exponential expression has a base and an
exponent.
5
3
5 is the base.
54Every exponential expression has a base and an
exponent.
5
3
The base tells you what number to write down.
5
55Every exponential expression has a base and an
exponent.
The exponent of 3 means to write the number 3
times.
5
3
5
5
5
56Every exponential expression has a base and an
exponent.
5
3
Exponents always imply multiplication.
5
5
5
X X
57Every exponential expression has a base and an
exponent.
5
3
Exponents always imply multiplication.
5
5
5 125
X X
58(No Transcript)
59Practice Time
601) What is the missing entry?
61(No Transcript)
622) What is the missing entry?
63(No Transcript)
643) What is the missing entry?
65(No Transcript)
664) What is the missing entry?
67(No Transcript)
685) What is the missing entry?
69(No Transcript)
706) Complete the table.
71(No Transcript)
72(No Transcript)
73(No Transcript)
747) Complete the table.
75(No Transcript)
76(No Transcript)
77(No Transcript)
788) Complete the table.
79(No Transcript)
80(No Transcript)
81(No Transcript)
829) Complete the table.
83(No Transcript)
84(No Transcript)
85(No Transcript)
8610) Complete the table.
87(No Transcript)
88(No Transcript)
89(No Transcript)
9011) Complete the table.
91(No Transcript)
92(No Transcript)
93(No Transcript)
9412) Complete the table.
95(No Transcript)
96(No Transcript)
97(No Transcript)
9813) Evaluate the following expression if x6 and
y3.
xy
9913) Evaluate the following expression if x6 and
y3.
63
10013) Evaluate the following expression if x6 and
y3.
63 6 x 6 x 6
10113) Evaluate the following expression if x6 and
y3.
63 6 x 6 x 6
216
10214) Evaluate the following expression if x2,
y3, and z4
zxy
10314) Evaluate the following expression if x2,
y3, and z4
423
10414) Evaluate the following expression if x2,
y3, and z4
423 4 2 2 2
10514) Evaluate the following expression if x2,
y3, and z4
423 4 2 2 2 32
106THE END!