Title: Soft motions of amorphous solids
1Soft motions of amorphous solids
Matthieu Wyart
2Amorphous solids
- structural glasses, granular matter, colloids,
dense emulsions - TRANSPORT
- thermal conductivity
- ?????????few ?? ??molecular sizes
- ? phonons strongly scattered
-
- FORCE PROPAGATION
-
-
-
-
- L?
-
-
-
ln (T)
L?
Behringer group
3Glass Transition
Heuer et. al. 2001
- ????????e????????????????????
- ?????????
4Angle of Repose
h
???Rearrangements Non-local
Pouliquen, Forterre
5Rigidity
cage effect
Rigidity toward collective motions more
demanding
Maxwell not rigid
Zd1 local
characteristic length ?
6 Vibrational modes in amorphous solids?
- Continuous medium phonon plane wave
- ? Density of states D(?)? N(?) V-1 d?-1
-
-
D(?) ?2 Debye
- Amorphous solids
- - Glass excess of low-frequency modes.
- Neutron scattering ? Boson Peak (1 THz10
K0) -
-
Transport, - Disorder cannot be a generic explanation
- Nature of these modes?
-
D(?)/?2
?
7Amorphous solid different from a continuous
bodyeven at L ??
Ohern, Silbert, Liu, Nagel
D(?) ?0
- Particles with repulsive, finite range
interactions at T0 - Jamming transition at packing
- fraction ?c 0.63
Jammed, ? ? ?c Pgt0
Unjammed, ? ? ?c P0
Crystalplane waves Jamming??
8Jamming critical point scaling properties
Geometry coordination
zc2d
z-zc?z (???c)1/2
- Excess of Modes
- same plateau is reached for
- different ?
- Define D(?)1/2 plateau
- ? ?z B1/2
Relation between geometry and excess of modes ??
9Rigidity and soft modes
???????, Thorpe, Alexander
Not rigid ? soft mode
Rigid
Soft modes
for all contacts ltijgt
??Ri??Rj??nij0
Maxwell z rigid? constraints Nc
degrees of freedom Nd
?
z2Nc/N ? 2d gtd1 global
jamming marginally connected zc2d
isostatic
(Moukarzel,
Roux, Witten, Tkachenko,...)
10Isostatic D(?) ? 0
?????? lattice independent lines ? D(?) ? 0
11zgtzc
?
? 1/ ?z ? ? B1/2/L ?z B1/2
12Random Packing
Wyart, Nagel and Witten, EPL 2005
- main difference modes are not one dimensional
- ? 1/ ?z
- L lt L continuous elastic description bad
approximation
13Ellenbroeck et.al 2006
Consistent with L ?z-1
14Extended Maxwell criterion
S. Alexander
f
X
?
dE k/L2 X2 - f X2 stability ? k/L2 gt
f
? ?z gt (f/k)1/2 e1/2 (???c)1/2
Wyart, Silbert, Nagel and Witten, PRE 2005
15Hard Spheres
V(r)
?
?cri?0.5
?c?0.64
???0.58
1
-
- contacts, contact forces fij
Ferguson et al. 2004, Donev et al. 2004
16Effective Potential
Brito and Wyart, EPL 2006
- discontinuous potential ? expand E?
- ? coarse-graining in time lt Rigt
fij(ltrijgt)?
h
1 d
Z?pi dhij e- phij/kT
pkT/lthgt
hijrij-1
Z?pi dhij e- fijhij/kT
Isostatic
17?
V( r) - ?kT ln(r-1) if contact V( r)0
else
G ??ij V( rij)
rijltRigt-ltRjgt
- weak ( ?z) relative correction throughout the
glass phase
18 Linear Response and Stability
- dynamical matrix dF M dltRgt
- ? Vibrational modes
?zgt C(p/B)1/2p-1/2
- Near ???and after a rapid
- quench just enough contacts
- to be rigid ? system stuck in
- the marginally stable region
-
-
-
???????
19vitrification
vitrification
Ln(?z)
Rigid
Equilibrium configuration
Unstable
Ln(p)
??????????????????
20Activation
?c
??
Point defects? Collective mode?
21Activation
?c
??
Brito and Wyart, J. phys stat, 2007
22Granular matter
- ????????
- Counting changes zc d1
- not critical z(p?0)? zc
d1lt z lt2d - z depends on ????and preparation
-
Somfai et al., PRE 2007 -
Agnolin et Roux, PRE 2008
23?start?h)
Hypothesis (i) z gt z_c (ii) Saturated
contacts ?zc.c. f(?/p) f(tan
(????(staron) (iii) Avalanche starts as ?z
?zc.c(?start) Consistent with numerics
(2d,?????? (somfai, staron) ?z0.2
?zc.c(?start) 0.16
?
h
24Rigidity criterion with a fixed and free boundary
wyart, arXiv 0807.5109
Fixed boundary ?z -gt ?z a/h
Free boundary ?z -gt ?z a'/h
a'lta
Finite h ?z -gt ?z (a-a')/h ???z (a-a')/h
f(tan ?? h? c0/ c1 tan ?????z
?????????? effect gt 2
25 Acknowledgement
Tom Witten Sid Nagel Leo Silbert Carolina Brito
26Isostatic D(?) ? 0
Wyart, Nagel and Witten, EPL 2005
- just rigid remove m contactsgenerate m
- SOFT MODES
- ? High sensitivity to boundary conditions
L
Xi
L
- generate pLd-1 soft modes independent (instead
of 1 for a normal solid) - argument show that these modes gain a frequency
?L-1 - when boundary conditions are restored. Then
D(?) Ld-1/(LdL-1) L0
27- Soft modes extended,
- heterogeneous
- Not soft in the original system, cf
- stretch or compress contacts cut to
- create them
- Introduce Trial modes
- Frequency ? harmonic modulation of a
translation, - i.e plane waves?
? ?? ??????L-1 - ? D(?) ?0 (variational) ? Anomalous
Modes
?????????????Ri?? sin(xi p/L) ??Ri?
x
L
??????????
28A geometrical property of random close packing
?z gt (???c)1/2
maximum density ? stable to the compression ?c ?
? relation density landscape // pair
distribution function g(r)
1(???c)/d
?z ? g(r) dr stable ? g(r) (r-1)-1/2
1
Silbert et al., 2005
29Glass Transition
- ??G ??????????????relaxation time
??????????????????????
Heuer et. al. 2001
- ????????e?????????????????????????????
30Vitrification as a buckling" phenomenum
? increases P increases
L