Soft motions of amorphous solids - PowerPoint PPT Presentation

1 / 30
About This Presentation
Title:

Soft motions of amorphous solids

Description:

Vibrational modes in amorphous solids? Continuous medium: phonon = plane wave ... Amorphous solids: - Glass: excess of low-frequency modes. ... – PowerPoint PPT presentation

Number of Views:267
Avg rating:3.0/5.0
Slides: 31
Provided by: wya93
Category:

less

Transcript and Presenter's Notes

Title: Soft motions of amorphous solids


1
Soft motions of amorphous solids

Matthieu Wyart
2
Amorphous solids
  • structural glasses, granular matter, colloids,
    dense emulsions
  • TRANSPORT
  • thermal conductivity
  • ?????????few ?? ??molecular sizes
  • ? phonons strongly scattered
  • FORCE PROPAGATION
  • L?

ln (T)
L?
Behringer group
3
Glass Transition
Heuer et. al. 2001
  • ????????e????????????????????
  • ?????????

4
Angle of Repose
h
???Rearrangements Non-local
Pouliquen, Forterre
5
Rigidity
cage  effect
Rigidity toward collective motions more
demanding
Maxwell not rigid

Zd1 local
characteristic length ?
6
Vibrational modes in amorphous solids?
  • Continuous medium phonon plane wave
  • ? Density of states D(?)? N(?) V-1 d?-1

D(?) ?2 Debye
  • Amorphous solids
  • - Glass excess of low-frequency modes.
  • Neutron scattering ? Boson Peak (1 THz10
    K0)

  • Transport,
  • Disorder cannot be a generic explanation
  • Nature of these modes?

D(?)/?2
?
7
Amorphous solid different from a continuous
bodyeven at L ??
Ohern, Silbert, Liu, Nagel
D(?) ?0
  • Particles with repulsive, finite range
    interactions at T0
  • Jamming transition at packing
  • fraction ?c 0.63

Jammed, ? ? ?c Pgt0
Unjammed, ? ? ?c P0

Crystalplane waves Jamming??
8
Jamming critical point scaling properties
Geometry coordination
zc2d
z-zc?z (???c)1/2
  • Excess of Modes
  • same plateau is reached for
  • different ?
  • Define D(?)1/2 plateau
  • ? ?z B1/2

Relation between geometry and excess of modes ??
9
Rigidity and soft modes
???????, Thorpe, Alexander
Not rigid ? soft mode
Rigid
Soft modes
for all contacts ltijgt
??Ri??Rj??nij0
Maxwell z rigid? constraints Nc
degrees of freedom Nd
?
z2Nc/N ? 2d gtd1 global
jamming marginally connected zc2d
isostatic
(Moukarzel,
Roux, Witten, Tkachenko,...)

10
Isostatic D(?) ? 0
?????? lattice independent lines ? D(?) ? 0
11
zgtzc
?
? 1/ ?z ? ? B1/2/L ?z B1/2

12
Random Packing
Wyart, Nagel and Witten, EPL 2005
  • main difference modes are not one dimensional
  • ? 1/ ?z
  • L lt L continuous elastic description bad
    approximation

13
Ellenbroeck et.al 2006
Consistent with L ?z-1
14
Extended Maxwell criterion
S. Alexander
f
X
?
dE k/L2 X2 - f X2 stability ? k/L2 gt
f
? ?z gt (f/k)1/2 e1/2 (???c)1/2
Wyart, Silbert, Nagel and Witten, PRE 2005
15
Hard Spheres
V(r)
?
?cri?0.5
?c?0.64
???0.58
1
  • contacts, contact forces fij

Ferguson et al. 2004, Donev et al. 2004
16
Effective Potential
Brito and Wyart, EPL 2006
  • discontinuous potential ? expand E?
  • ? coarse-graining in time lt Rigt

fij(ltrijgt)?
h
1 d
Z?pi dhij e- phij/kT
pkT/lthgt
hijrij-1
Z?pi dhij e- fijhij/kT
Isostatic
  • fijkT/lthijgt

17
  • fijkT/lthijgt

?
V( r) - ?kT ln(r-1) if contact V( r)0
else
G ??ij V( rij)
rijltRigt-ltRjgt
  • weak ( ?z) relative correction throughout the
    glass phase

18
Linear Response and Stability
  • dynamical matrix dF M dltRgt
  • ? Vibrational modes

?zgt C(p/B)1/2p-1/2
  • Near ???and after a rapid
  • quench just enough contacts
  • to be rigid ? system stuck in
  • the marginally stable region

???????
19
vitrification
vitrification
Ln(?z)
Rigid
Equilibrium configuration
Unstable
Ln(p)
??????????????????
20
Activation
?c
??

Point defects? Collective mode?
21
Activation
?c
??
Brito and Wyart, J. phys stat, 2007
22
Granular matter
  • ????????
  • Counting changes zc d1
  • not critical z(p?0)? zc
    d1lt z lt2d
  • z depends on ????and preparation

  • Somfai et al., PRE 2007

  • Agnolin et Roux, PRE 2008

23
?start?h)
Hypothesis (i) z gt z_c (ii) Saturated
contacts ?zc.c. f(?/p) f(tan
(????(staron) (iii) Avalanche starts as ?z
?zc.c(?start) Consistent with numerics
(2d,?????? (somfai, staron) ?z0.2
?zc.c(?start) 0.16

?
h
24
Rigidity criterion with a fixed and free boundary
wyart, arXiv 0807.5109
Fixed boundary ?z -gt ?z a/h
Free boundary ?z -gt ?z a'/h
a'lta
Finite h ?z -gt ?z (a-a')/h ???z (a-a')/h
f(tan ?? h? c0/ c1 tan ?????z

?????????? effect gt 2
25
Acknowledgement
Tom Witten Sid Nagel Leo Silbert Carolina Brito
26
Isostatic D(?) ? 0
Wyart, Nagel and Witten, EPL 2005
  • just rigid remove m contactsgenerate m
  • SOFT MODES
  • ? High sensitivity to boundary conditions

L
Xi
L
  • generate pLd-1 soft modes independent (instead
    of 1 for a normal solid)
  • argument show that these modes gain a frequency
    ?L-1
  • when boundary conditions are restored. Then


D(?) Ld-1/(LdL-1) L0
27
  • Soft modes extended,
  • heterogeneous
  • Not soft in the original system, cf
  • stretch or compress contacts cut to
  • create them
  • Introduce Trial modes
  • Frequency ? harmonic modulation of a
    translation,
  • i.e plane waves?
    ? ?? ??????L-1
  • ? D(?) ?0 (variational) ? Anomalous
    Modes

?????????????Ri?? sin(xi p/L) ??Ri?
x

L
??????????


28
A geometrical property of random close packing
?z gt (???c)1/2
maximum density ? stable to the compression ?c ?
? relation density landscape // pair
distribution function g(r)
1(???c)/d
?z ? g(r) dr stable ? g(r) (r-1)-1/2
1
Silbert et al., 2005
29
Glass Transition
  • ??G ??????????????relaxation time

??????????????????????
Heuer et. al. 2001
  • ????????e?????????????????????????????

30
Vitrification as a buckling" phenomenum
? increases P increases
L
Write a Comment
User Comments (0)
About PowerShow.com