Title: PowerPointPrsentation
1Chapter 2
Modeling with High Level Petri Nets
2A variant of the biscuit vending machine
- two kinds of biscuits
- and ?
3A variant of the biscuit vending machine
- two kinds of biscuits
- and ?
E
H
? ?
5
A
. a
y,z
outbox
C
d
2
signal
B
y,z
y
xgt 2
b
c
remove biscuits
no signal
G F
slot is free
D
coin back
d
coin store
4The components of a HL net
Everything can be inscribed
5The data structure of a HL Net Multisets
- we dont want to distinguish 1-Euro coins
- usually a place contains many copies of
different sorts - the sorts constitute the universe, U
- multiset m U ? ?
- we assume a sufficiently large universe
- Let U contain whatever sort we consider
- let ? denote the set of all multisets over U
6some notations
- a multiset m U ? ? is finite if m(u) ? 0
for finitely many u only - notation for finite multisets
- m() 3, m(?) 2, m(u) 0, for all other u?U
,,,?,? - emty multiset (u) 0 for all u?U
7a little mathematics on multisets
- you can add multisets m,n ? ?
- ,? ? ,?,?
- for each u?U let (mn)(u) def m(u)n(u).
- you can compare multisets m,n ? ?
- ,? lt ,?,?
- let m ? n iff for each u?U m(u) ? n(u)
- you can subtract a multiset m from a multiset n
if m ? n ,?,? - ? ,? - for each u?U let (m - n)(u) def m(u) - n(u)
8marking M P ? ?
- M0(A) M0(B) M0(C) M0(F)
- M0(D) M0(G) ?
- M0(E) 5
- M0(H) ?,?, , ,
E
H
? ?
5
A
. a
y,z
outbox
C
d
2
signal
B
y,z
y
xgt 2
b
c
remove biscuits
no signal
G F
slot is free
D
coin back
d
coin store
9a notation
- for an arc (x,y)
- xy denotes the inscription of (x,y).
- aA 1 Da ? Eb x bE x-2
- xy if (x,y) is no arc.
- aE
E
H
? ?
5
A
. a
y,z
outbox
C
d
2
signal
B
y,z
y
xgt 2
b
c
remove biscuits
no signal
G F
slot is free
D
coin back
d
coin store
10a marking M enables a transition t
- 1st case For each arc (p,t) holds pt ? ? .
- Def. M enables t iff for each (p,t) pt lt
M(p) . - M0 enables a
E
H
? ?
5
A
. a
y,z
outbox
C
d
2
signal
B
y,z
y
xgt 2
b
c
remove biscuits
no signal
G F
slot is free
D
coin back
d
coin store
11step M ?? M
t
- 1st case For each arc (p,t) holds pt??.
- let M enable t. Then for each place p
- M(p) M(p) pt tp
- M0 ?? M1 with M1(D) , M1(A) 1
E
H
? ?
5
A
. a
y,z
outbox
C
d
2
signal
B
y,z
y
xgt 2
b
c
remove biscuits
no signal
G F
slot is free
D
coin back
d
coin store
12marking M1
- 1st case For each arc (p,t) holds pt??.
- let M enable t. Then for each place p
- M(p) M(p) pt tp
- M0 ?? M1 with M1(D) , M1(A) 1
E
H
? ?
5
A
. a
y,z
outbox
C
d
2
signal
B
y,z
y
1
xgt 2
b
c
remove biscuits
no signal
G F
slot is free
D
coin back
d
coin store
13variables in arc inscriptions
- 2nd case some arc inscriptions pt and tp
contain variables - Let x1, ... xn be the variables in arc inscr.
around t - Let u1, ..., un? U. Then x1 u1, ... xn un is a
valuation. - Each valuation yields pt ? ?.
- Continue as above.
E
H
? ?
5
A
. a
y,z
outbox
C
d
2
signal
B
y,z
y
1
xgt 2
b
c
remove biscuits
no signal
G F
slot is free
D
coin back
d
coin store
14variables in arc inscriptions
- M1 enables b with valuation x 5
- but not with x 4
- M1 ????? M2
b, x 5
E
H
? ?
5
A
. a
y,z
outbox
C
d
2
signal
B
y,z
y
1
xgt 2
b
c
remove biscuits
no signal
G F
slot is free
D
coin back
d
coin store
15marking M2
- M1 enables b with valuation x 5
- but not with x 4
- M1 ????? M2
b, x 5
? ?
3
y,z
C
d
2
B
y,z
y
?
xgt 2
b
c
G F
D
d
1
16four enabeling valuations for c
- M2 enables c with valuations
- y z ?
- y z
- y , z ?
- y ?, z
? ?
3
y,z
C
d
2
B
y,z
y
?
xgt 2
b
c
G F
D
d
1
17Frequent special case
- U ?
- M(p) n ?
- xy n ?
- classical Petri Nets
18End of Chapter 2
Modeling with High Level Petri Nets
19? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? M?
M M? ? ? def ? ? ? ? ?? ? ? ? ? ? ? ???????? ?
???????? ? ? ???????? ? ???????? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ??? ? ? ? ? ? ? ? ??
WFv(A) SFv(A) ??Nexta?vars? var?var?var helveti
ca 24 ???????????
20MathB ? ? ? ? ? ? ? ? MathC ? ? ? ? ? ? ? ? ? ?
? ? ? Math1 ? ? ? ? ? ? ? Math4 ?? ? ? ?
???????? ? ???????? ? ? ???????? ? ????????
? Math5 ? ? ? ? ? Symbol ? ? ? ? ? ? ? ?
??? ?? ? ? ? ? ? ? ? . ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? .
?? ? def M? M M? WFv(A) SFv(A) ??Nexta?vars?
helvetica 24