PowerPointPrsentation - PowerPoint PPT Presentation

1 / 20
About This Presentation
Title:

PowerPointPrsentation

Description:

two kinds of biscuits. and. A variant of the biscuit vending machine. 9/28/09. 3 . a ... A variant of the biscuit vending machine. 5. x 2. 2. 9/28/09. 4. The ... – PowerPoint PPT presentation

Number of Views:67
Avg rating:3.0/5.0
Slides: 21
Provided by: Top51
Category:

less

Transcript and Presenter's Notes

Title: PowerPointPrsentation


1
Chapter 2
Modeling with High Level Petri Nets
2
A variant of the biscuit vending machine
  • two kinds of biscuits
  • and ?







3
A variant of the biscuit vending machine
  • two kinds of biscuits
  • and ?

E
H
? ?
5
A
. a
y,z
outbox
C
d
2
signal
B
y,z
y
xgt 2
b
c
remove biscuits
no signal
G F
slot is free
D
coin back
d
coin store
4
The components of a HL net
Everything can be inscribed
5
The data structure of a HL Net Multisets
  • we dont want to distinguish 1-Euro coins
  • usually a place contains many copies of
    different sorts
  • the sorts constitute the universe, U
  • multiset m U ? ?
  • we assume a sufficiently large universe
  • Let U contain whatever sort we consider
  • let ? denote the set of all multisets over U

6
some notations
  • a multiset m U ? ? is finite if m(u) ? 0
    for finitely many u only
  • notation for finite multisets
  • m() 3, m(?) 2, m(u) 0, for all other u?U
    ,,,?,?
  • emty multiset (u) 0 for all u?U

7
a little mathematics on multisets
  • you can add multisets m,n ? ?
  • ,? ? ,?,?
  • for each u?U let (mn)(u) def m(u)n(u).
  • you can compare multisets m,n ? ?
  • ,? lt ,?,?
  • let m ? n iff for each u?U m(u) ? n(u)
  • you can subtract a multiset m from a multiset n
    if m ? n ,?,? - ? ,?
  • for each u?U let (m - n)(u) def m(u) - n(u)

8
marking M P ? ?
  • M0(A) M0(B) M0(C) M0(F)
  • M0(D) M0(G) ?
  • M0(E) 5
  • M0(H) ?,?, , ,

E
H
? ?
5
A
. a
y,z
outbox
C
d
2
signal
B
y,z
y
xgt 2
b
c
remove biscuits
no signal
G F
slot is free
D
coin back
d
coin store
9
a notation
  • for an arc (x,y)
  • xy denotes the inscription of (x,y).
  • aA 1 Da ? Eb x bE x-2
  • xy if (x,y) is no arc.
  • aE

E
H
? ?
5
A
. a
y,z
outbox
C
d
2
signal
B
y,z
y
xgt 2
b
c
remove biscuits
no signal
G F
slot is free
D
coin back
d
coin store
10
a marking M enables a transition t
  • 1st case For each arc (p,t) holds pt ? ? .
  • Def. M enables t iff for each (p,t) pt lt
    M(p) .
  • M0 enables a

E
H
? ?
5
A
. a
y,z
outbox
C
d
2
signal
B
y,z
y
xgt 2
b
c
remove biscuits
no signal
G F
slot is free
D
coin back
d
coin store
11
step M ?? M
t
  • 1st case For each arc (p,t) holds pt??.
  • let M enable t. Then for each place p
  • M(p) M(p) pt tp
  • M0 ?? M1 with M1(D) , M1(A) 1

E
H
? ?
5
A
. a
y,z
outbox
C
d
2
signal
B
y,z
y
xgt 2
b
c
remove biscuits
no signal
G F
slot is free
D
coin back
d
coin store
12
marking M1
  • 1st case For each arc (p,t) holds pt??.
  • let M enable t. Then for each place p
  • M(p) M(p) pt tp
  • M0 ?? M1 with M1(D) , M1(A) 1

E
H
? ?
5
A
. a
y,z
outbox
C
d
2
signal
B
y,z
y
1
xgt 2
b
c
remove biscuits
no signal
G F
slot is free
D
coin back
d
coin store
13
variables in arc inscriptions
  • 2nd case some arc inscriptions pt and tp
    contain variables
  • Let x1, ... xn be the variables in arc inscr.
    around t
  • Let u1, ..., un? U. Then x1 u1, ... xn un is a
    valuation.
  • Each valuation yields pt ? ?.
  • Continue as above.

E
H
? ?
5
A
. a
y,z
outbox
C
d
2
signal
B
y,z
y
1
xgt 2
b
c
remove biscuits
no signal
G F
slot is free
D
coin back
d
coin store
14
variables in arc inscriptions
  • M1 enables b with valuation x 5
  • but not with x 4
  • M1 ????? M2

b, x 5
E
H
? ?
5
A
. a
y,z
outbox
C
d
2
signal
B
y,z
y
1
xgt 2
b
c
remove biscuits
no signal
G F
slot is free
D
coin back
d
coin store
15
marking M2
  • M1 enables b with valuation x 5
  • but not with x 4
  • M1 ????? M2

b, x 5
? ?
3
y,z
C
d
2
B
y,z
y
?
xgt 2
b
c
G F
D
d
1
16
four enabeling valuations for c
  • M2 enables c with valuations
  • y z ?
  • y z
  • y , z ?
  • y ?, z

? ?
3
y,z
C
d
2
B
y,z
y
?
xgt 2
b
c
G F
D
d
1
17
Frequent special case
  • U ?
  • M(p) n ?
  • xy n ?
  • classical Petri Nets

18
End of Chapter 2
Modeling with High Level Petri Nets
19
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? M?
M M? ? ? def ? ? ? ? ?? ? ? ? ? ? ? ???????? ?
???????? ? ? ???????? ? ???????? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ??? ? ? ? ? ? ? ? ??
WFv(A) SFv(A) ??Nexta?vars? var?var?var helveti
ca 24 ???????????
20
MathB ? ? ? ? ? ? ? ? MathC ? ? ? ? ? ? ? ? ? ?
? ? ? Math1 ? ? ? ? ? ? ? Math4 ?? ? ? ?
???????? ? ???????? ? ? ???????? ? ????????
? Math5 ? ? ? ? ? Symbol ? ? ? ? ? ? ? ?
??? ?? ? ? ? ? ? ? ? . ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? .
?? ? def M? M M? WFv(A) SFv(A) ??Nexta?vars?
helvetica 24
Write a Comment
User Comments (0)
About PowerShow.com