Title: Les projets de faisceaux radioacifs
1Les projets de faisceaux radioacifs
2Les projets de faisceaux radioactifs
- Quelques motivations
- Les Projets
- Fragmentation du Projectile FAIR
- ISOL
- SPIRAL 2
- EURISOL
3The Nuclear Chart and Challenges
4ab initio calculations for light nuclei
- Systematic study of light nuclei (Alt12) shows the
necessity of including a 3-body force
R.B. Wiringa and S.C. Pieper, Phys. Rev. Lett.
89 (2002) 182501
5Modification of magic numbers far from stability
E (MeV)
Lowest 2 state
6(No Transcript)
746Ar(d,p) 10 MeV/A SPIRAL
L. Gaudefroy, thèse
8Effect of shell closures on element abundances
9Neutron-proton pairing
- n-p pairing can occur in 2 different states T0
and T1. The former is unique to n-p. It can be
best studied in NZ nuclei through spectroscopy
and 2-nucleon transfer reactions.
10Collective Modes
Atomic nuclei display a variety of collective
modes in which an assembly of neutrons moves
coherently e.g Low-lying vibrations and
rotations. ChallengeWill new types of
collective mode be observed in neutron-rich
nuclei in particular?
Will the nucleus become a three- fluid
system-made up of a proton and neutron core
plus a skin of neutrons? We will then get
collective modes in which the skin moves
relative to the core.
From W. Gelletly
11Two-proton radioactivity near the proton drip-line
Proton energy and angle correlations ? di-proton
emission?
J. Giovinazzo et al., PRL89 (2002) 102501
12Super heavy elements discovery and spectroscopy
294118
GSI Z?112 RIKEN Z113 DUBNA Z to 118?
- Synthesis of new elements/isotopes (Z ? 120)
- Spectroscopy of Transfermium elements (Z ?
108) - Shell structure of superheavy nuclei
13Studying the liquid-gas phase transition far from
stability
Muller Serot PRC 1995
Neutron rich nuclei
isospin distillation
pressure
Bonche Vautherin NPA 1984
asymmetry rp/rn
Proton rich nuclei vanishing limiting
temperatures
From Ph. Chomaz and F. Gulminelli
14Radioactive beam production Two complementary
methods
GANIL/SISSI, GSI, RIKEN, NSCL/MSU
High energy, large variety of species, Poor
optical qualities, lack of energy flexibility
GANIL/SPIRAL, REX/ISOLDE, ISAAC/TRIUMF
good beam qualities, flexibility, intensity Low
energy, chemistry is difficult
15The GANIL Facility Today
16NuPECC recommends the construction of 2 next
generation RIB infrastructures in Europe, i.e.
one ISOL and one in-flight facility. The
in-flight machine would arise from a major
upgrade of the current GSI facility, while
EURISOL would constitute the new ISOL facility
17Le projet FAIR (GSI)
Accord gouvernemental de principe Construction
en étapes 2008 2012 (?)
Nouvelles Installations Double
Synchrotron 238U à 1 - 25 GeV/u (1012
pps) Noyaux exotiques produits par
fragmentation et fission Super FRS (intensité
x103 ) Multiples anneaux de stockage et
collisionneurs pour des ions lourds,
anti-protons et électrons
SIS100/300
UNILAC
SIS
FRS
ESR
18The NUSTAR facility
Low-Energy Branch
Super-FRS
Ring Branch
High-Energy Branch
19The EXL detector Transfer reactions in a
storage ring
20The EURISOL Road Map
- Vigorous scientific exploitation of current ISOL
facilities EXCYT, Louvain, REX/ISOLDE, SPIRAL - Construction of intermediate generation
facilities MAFF, REX upgrade, SPES, SPIRAL2 - Design and prototyping of the most specific and
challenging parts of EURISOL in the framework of
EURISOL_DS.
21LAvant Projet Détaillé SPIRAL2
22Accelerated Beam Intensities (pps) Examples
Relatively easy beams Cu, Zn, As, Se, Br, Kr,
Rb, Ag, Cd, In, Sb, I, Xe, Cs
www.ganil.fr/research/developmens/spiral2
23Regions of the Chart of Nuclei Accesible with
SPIRAL 2 beams
Primary beams ? deuterons ? heavy ions
6. SHE
4. NZ IsolIn-flight
5. Transfermiums In-flight
2. Fusion reaction with n-rich beams
1. Fission products (with converter)
3. Fission products (without converter)
8. Deep Inelastic Reactions with RNB
7. High Intensity Light RIB
24Le Concept EURISOL
25Le Design Study EURISOL_DS
- Durée 2005-2008
- 21 instituts de 11 pays européens
- 12 tâches couvrant cibles accélérateurs
physique, faisceaux et sécurité et b-beams - Participation française à 11 des 12 tâches
- Coût total 33M participation UE 9.1 M
- Participation UE aux laboratoires français
- GANIL 1M
- IN2P3 1.6M
- CEA 0.5 M
26MMW Hg Target Configuration
- BLD Shape of Hg target optimised for neutron
production (neutron balance) - 15 mm sigma proton beam, fully contained in the
Hg target - Possibility of further reduction in Hg target
dimensions ? Intermediate solution (IS)
- Hg-J designed for high-energy neutron fluxes in
the UnatC3 (3 g/cm3) fission target - 4 mm sigma proton beam, mostly contained in the
4 cm diameter Hg Jet - Use of reflector to improve neutron economy and
to shield HE particles
From Yacine Kadi - CERN
27Some beam intensities
Calculations for EURISOL Helge Ravn
6He 5X1013 pps 18Ne 5X1012 pps
28Yields after acceleration Comparison between
facilities
a)
Kr isotopes
a)
Yield for in-flight production of fission
fragments at relativistic energy
29Combination of beta beam with low energy super
beam
Unique to CERN- based scenario combines CP and
T violation tests ?e ? ?m (?) (T)
?m ? ?e (p) (CP) ?e ? ?m (?-) (T)
?m ? ?e (p-)
30CERN-SPL-based Neutrino SUPERBEAM
300 MeV n m Neutrinos small contamination from
ne (no K at 2 GeV!)
Fréjus underground lab.
A large underground water Cerenkov (400 kton)
UNO/HyperK or/and a large L.Arg detector. also
proton decay search, supernovae events solar and
atmospheric neutrinos. Performance similar to
J-PARC II There is a window of opportunity for
digging the cavern starting in 2008 (safety
tunnel in Frejus or TGV test gallery)
31CERN b-beam baseline scenario
SPL
Decay ring Brho 1500 Tm B 5 T Lss 2500 m
SPS
Decay Ring
ISOL target Ion source
ECR
Cyclotrons, linac or FFAG
Rapid cycling synchrotron
PS
32Time scales
Project definition Construction Exploitation