Title: Fisica%201%20per%20Biotecnologie%20Introduzione
1Fisica 1 per BiotecnologieIntroduzione
Lun h 1030Mer h 1030 Gio h 1030
Alessandro De Angelis E-mail deangelis_at_fisica.uni
ud.itRicevo il mercoledì, 830-930
2MAGIC
Telescopio Nazionale Galileo
La Palma, IAC 28 North, 18 West
Grantecan
MAGIC
MAGIC and its Control House
MAGIC
3www.fisica.uniud.it/deangeli/biotec
- Obiettivi Scopo del corso è di fornire gli
elementi di base della fisica generale. - Struttura Il corso si svolge nel I periodo del I
anno, con 22 lezioni distribuite in tre unità di
90 minuti ogni settimana. Nella pagina Web del
corso e' pubblicata una versione aggiornata della
struttura dettagliata delle lezioni (vedi tabella
a pie' di pagina). - Programma Unità di misura. Cinematica. Forze in
natura gravitazione, elettromagnetismo.
Dinamica. Energia. Oscillazioni cenni sul moto
ondulatorio e sulle onde elettromagnetiche. - Testo Serway e Jewett - Principi di Fisica vol.
1, ultima edizione, EdiSES appunti di lezione
(che non sostituiscono il testo). Gli appunti di
lezione e una selezione dei compiti degli anni
precedenti sono reperibili nel sito del materiale
didattico.
4www.fisica.uniud.it/deangeli/biotec
- Titolare Il titolare del corso si chiama
Alessandro De Angelis. Riceve nell'orario
riportato su SINDY, o su appuntamento scrivendo a
deangelis_at_fisica.uniud.it. Melisa Rossi
contribuisce al corso. - Valutazione Nella sessione d'esame (due appelli)
che segue il corso il voto proposto e' dato dal
voto di un accertamento finale (valutato fino a
30 punti) cui viene aggiunto un bonus da 0 a 6
punti basato sulla valutazione dei compiti per
casa. Lo studente che abbia superato la prova
riportando un voto complessivo non inferiore a
18/30 supera l'esame. Nelle sessioni successive
(un appello a Luglio e uno a Settembre) l'esame
consta di una prova scritta che include domande
di teoria, o di un orale che include esercizi. - Consigli
- Procurarsi il libro di testo ben prima
dell'inizio del corso, magari sfogliarlo quando
non si sa che fare... - Dare un'occhiata agli argomenti della lezione
successiva (il programma lezione per lezione e'
dettagliato nella pagina Web del corso) - Studiare regolarmente ogni giorno quanto svolto
in classe e svolgere gli esercizi relativi.
5()
6About Physics
- Provides a quantitative understanding of
phenomena occurring in our universe - Based on experimental observations and
mathematical analysis - Used to develop theories that explain the
phenomena being studied and that relate to other
established theories
7What is Physics? Model Building
- A model is a simplified substitution for the real
problem that allows us to solve the problem in a
relatively simple way - Make predictions about the behavior of the system
- The predictions will be based on interactions
among the components and/or - Based on the interactions between the components
and the environment - As long as the predictions of the model agree
with the actual behavior of the real system, the
model is valid
8Particle Model
- The particle model allows the replacement of an
extended object with a particle which has mass,
but zero size - Two conditions for using the particle model are
- The size of the actual object is of no
consequence in the analysis of its motion - Any internal processes occurring in the object
are of no consequence in the analysis of its
motion
9Theory and Experiments
- Should complement each other
- When a discrepancy occurs, theory may be modified
- Theory may apply to limited conditions
- Example Newtonian Mechanics is confined to
objects traveling slowly with respect to the
speed of light - Used to try to develop a more general theory
10Standards of Quantities
- SI Système International
- The system used in this course
- Consists of a system of definitions and standards
to describe fundamental physical quantities
11Time second, s
- Historically defined as 1/86400 of a solar day
- Now defined in terms of the oscillation of
radiation from a cesium atom - Some approximate time intervals, in s
- Age of the Universe 5 1017
- Since the fall of Roman Empire 5 1012
- Your age 6 108
- One year p 107
- One lecture 5 103
- Time between two heartbeats 1
12Length meter, m
- The human-scale definition 1/10000000 of the
distance between the North Pole and the equator, - through Paris
- Length is now defined as the distance traveled by
light in a vacuum during a given time (1/3 10-8
s) - See table 1.1 for some examples of lengths
13Mass kilogram, kg
- The mass of a specific cylinder kept somewhere in
Paris - See table 1.2 for masses of various objects
14Number Notation
- Separation between units and decimals dot (.)
- When writing out numbers with many digits,
spacing in groups of three will be used - No commas, no dots
- Examples
- 25 100
- 5.123 456 789 12
15Reasonableness of Results
- When solving problem, you need to check your
answer to see if it seems reasonable - How many molecules in a liter of milk?
- Reviewing the tables of approximate values for
length, mass, and time will help you test for
reasonableness
16Systems of Measurements, SI Summary
- SI System
- Almost universally used in science and industry
- Length is measured in meters (m)
- Time is measured in seconds (s)
- Mass is measured in kilograms (kg)
ITS A LAW
17Prefixes
- Prefixes correspond to powers of 10
- Each prefix has a specific name
- Each prefix has a specific abbreviation
- The prefixes can be used with any base units
- They are multipliers of the base unit
- Examples
- 1 mm 10-3 m
- 1 mg 10-3 g
18Fundamental Derived Quantities
- In mechanics, three fundamental quantities are
used - Length
- Mass
- Time
- Will also use derived quantities
- These are other quantities that can be expressed
as a mathematical combination of fundamental
quantities - Density is an example of a derived quantity It
is defined as mass per unit volume - Units are kg/m3
19Dimensional Analysis
- Technique to check the correctness of an equation
or to assist in deriving an equation. Dimension
has a specific meaning it denotes the physical
nature of a quantity - Dimensions (length, mass, time, combinations) can
be treated as algebraic quantities - Add, subtract, multiply, divide
- Both sides of equation must have the same
dimensions - Dimensions are denoted with square brackets
- Length L
- Mass M
- Time T
- Cannot give numerical factors this is its
limitation
20Dimensional Analysis, example
- Given the equation x 1/2 a t2
- Check dimensions on each side
- The T2s cancel, leaving L for the dimensions of
each side - The equation is dimensionally correct
- There are no dimensions for the constant
21Conversion of Units
- When units are not consistent, you may need to
convert to appropriate ones - Units can be treated like algebraic quantities
that can cancel each other out - Always include units for every quantity, you can
carry the units through the entire calculation - Multiply original value by a ratio equal to one
- The ratio is called a conversion factor
- Example
22Order of Magnitude
- Approximation based on a number of assumptions
- May need to modify assumptions if more precise
results are needed - Order of magnitude is the power of 10 that
applies - In order of magnitude calculations, the results
are reliable to within about a factor of 10
23Uncertainty in Measurements
- There is uncertainty in every measurement, this
uncertainty carries over through the calculations - Need a technique to account for this uncertainty
- We will use rules for significant figures to
approximate the uncertainty in results of
calculations
24Significant Figures
- A significant figure is one that is reliably
known - Zeros may or may not be significant
- Those used to position the decimal point are not
significant - To remove ambiguity, use scientific notation
- In a measurement, the significant figures include
the first estimated digit - 0.0075 m has 2 significant figures
- The leading zeroes are placeholders only
- Can write in scientific notation to show more
clearly 7.5 x 10-3 m for 2 significant figures - 10.0 m has 3 significant figures
- The decimal point gives information about the
reliability of the measurement - 1500 m is ambiguous
- Use 1.5 x 103 m for 2 significant figures
- Use 1.50 x 103 m for 3 significant figures
- Use 1.500 x 103 m for 4 significant figures
25Operations with Significant Figures
- When multiplying or dividing, the number of
significant figures in the final answer is the
same as the number of significant figures in the
quantity having the lowest number of significant
figures. - Example 25.57 m x 2.45 m 62.6 m2
- The 2.45 m limits your result to 3 significant
figures - When adding or subtracting, the number of decimal
places in the result should equal the smallest
number of decimal places in any term in the sum. - Example 135 cm 3.25 cm 138 cm
- The 135 cm limits your answer to the units
decimal value
26Rounding
- Last retained digit is increased by 1 if the last
digit dropped is 5 or above - Last retained digit is remains as it is if the
last digit dropped is less than 5 - Saving rounding until the final result will help
eliminate accumulation of errors
27Coordinate Systems
- Used to describe the position of a point in space
- Coordinate system consists of
- A fixed reference point called the origin
- Specific axes with scales and labels
- Instructions on how to label a point relative to
the origin and the axes
28Cartesian Coordinate System
- Also called rectangular coordinate system
- x- and y- axes intersect at the origin
- Points are labeled (x,y)
- 3 coordinates (x,y,z) are enough to define the
position of a particle in space
29Polar Coordinate System
- Origin and reference line are noted
- Point is distance r from the origin in the
direction of angle ?, ccw from reference line - Points are labeled (r,?)
30Polar to Cartesian Coordinates
- Based on forming a right triangle from r and q
- x r cos q
- y r sin q
Cartesian to Polar
- r is the hypotenuse and q an angle