Fisica%201%20per%20Biotecnologie%20Introduzione - PowerPoint PPT Presentation

About This Presentation
Title:

Fisica%201%20per%20Biotecnologie%20Introduzione

Description:

Obiettivi: Scopo del corso di fornire gli elementi di base della fisica generale. ... Nella pagina Web del corso e' pubblicata una versione aggiornata della ... – PowerPoint PPT presentation

Number of Views:88
Avg rating:3.0/5.0
Slides: 31
Provided by: alessandro9
Category:

less

Transcript and Presenter's Notes

Title: Fisica%201%20per%20Biotecnologie%20Introduzione


1
Fisica 1 per BiotecnologieIntroduzione
Lun h 1030Mer h 1030 Gio h 1030
Alessandro De Angelis E-mail deangelis_at_fisica.uni
ud.itRicevo il mercoledì, 830-930
2
MAGIC
Telescopio Nazionale Galileo
La Palma, IAC 28 North, 18 West
Grantecan
MAGIC
MAGIC and its Control House
MAGIC
3
www.fisica.uniud.it/deangeli/biotec
  • Obiettivi Scopo del corso è di fornire gli
    elementi di base della fisica generale.
  • Struttura Il corso si svolge nel I periodo del I
    anno, con 22 lezioni distribuite in tre unità di
    90 minuti ogni settimana. Nella pagina Web del
    corso e' pubblicata una versione aggiornata della
    struttura dettagliata delle lezioni (vedi tabella
    a pie' di pagina).
  • Programma Unità di misura. Cinematica. Forze in
    natura gravitazione, elettromagnetismo.
    Dinamica. Energia. Oscillazioni cenni sul moto
    ondulatorio e sulle onde elettromagnetiche. 
  • Testo Serway e Jewett - Principi di Fisica vol.
    1, ultima edizione, EdiSES appunti di lezione
    (che non sostituiscono il testo). Gli appunti di
    lezione e una selezione dei compiti degli anni
    precedenti sono reperibili nel sito del materiale
    didattico.

4
www.fisica.uniud.it/deangeli/biotec
  • Titolare Il titolare del corso si chiama
    Alessandro De Angelis. Riceve nell'orario
    riportato su SINDY, o su appuntamento scrivendo a
    deangelis_at_fisica.uniud.it. Melisa Rossi
    contribuisce al corso.
  • Valutazione Nella sessione d'esame (due appelli)
    che segue il corso il voto proposto e' dato dal
    voto di un accertamento finale (valutato fino a
    30 punti) cui viene aggiunto un bonus da 0 a 6
    punti basato sulla valutazione dei compiti per
    casa. Lo studente che abbia superato la prova
    riportando un voto complessivo non inferiore a
    18/30 supera l'esame. Nelle sessioni successive
    (un appello a Luglio e uno a Settembre) l'esame
    consta di una prova scritta che include domande
    di teoria, o di un orale che include esercizi.
  • Consigli
  • Procurarsi il libro di testo ben prima
    dell'inizio del corso, magari sfogliarlo quando
    non si sa che fare...
  • Dare un'occhiata agli argomenti della lezione
    successiva (il programma lezione per lezione e'
    dettagliato nella pagina Web del corso)
  • Studiare regolarmente ogni giorno quanto svolto
    in classe e svolgere gli esercizi relativi.

5
()
6
About Physics
  • Provides a quantitative understanding of
    phenomena occurring in our universe
  • Based on experimental observations and
    mathematical analysis
  • Used to develop theories that explain the
    phenomena being studied and that relate to other
    established theories

7
What is Physics? Model Building
  • A model is a simplified substitution for the real
    problem that allows us to solve the problem in a
    relatively simple way
  • Make predictions about the behavior of the system
  • The predictions will be based on interactions
    among the components and/or
  • Based on the interactions between the components
    and the environment
  • As long as the predictions of the model agree
    with the actual behavior of the real system, the
    model is valid

8
Particle Model
  • The particle model allows the replacement of an
    extended object with a particle which has mass,
    but zero size
  • Two conditions for using the particle model are
  • The size of the actual object is of no
    consequence in the analysis of its motion
  • Any internal processes occurring in the object
    are of no consequence in the analysis of its
    motion

9
Theory and Experiments
  • Should complement each other
  • When a discrepancy occurs, theory may be modified
  • Theory may apply to limited conditions
  • Example Newtonian Mechanics is confined to
    objects traveling slowly with respect to the
    speed of light
  • Used to try to develop a more general theory

10
Standards of Quantities
  • SI Système International
  • The system used in this course
  • Consists of a system of definitions and standards
    to describe fundamental physical quantities

11
Time second, s
  • Historically defined as 1/86400 of a solar day
  • Now defined in terms of the oscillation of
    radiation from a cesium atom
  • Some approximate time intervals, in s
  • Age of the Universe 5 1017
  • Since the fall of Roman Empire 5 1012
  • Your age 6 108
  • One year p 107
  • One lecture 5 103
  • Time between two heartbeats 1

12
Length meter, m
  • The human-scale definition 1/10000000 of the
    distance between the North Pole and the equator,
  • through Paris
  • Length is now defined as the distance traveled by
    light in a vacuum during a given time (1/3 10-8
    s)
  • See table 1.1 for some examples of lengths

13
Mass kilogram, kg
  • The mass of a specific cylinder kept somewhere in
    Paris
  • See table 1.2 for masses of various objects

14
Number Notation
  • Separation between units and decimals dot (.)
  • When writing out numbers with many digits,
    spacing in groups of three will be used
  • No commas, no dots
  • Examples
  • 25 100
  • 5.123 456 789 12

15
Reasonableness of Results
  • When solving problem, you need to check your
    answer to see if it seems reasonable
  • How many molecules in a liter of milk?
  • Reviewing the tables of approximate values for
    length, mass, and time will help you test for
    reasonableness

16
Systems of Measurements, SI Summary
  • SI System
  • Almost universally used in science and industry
  • Length is measured in meters (m)
  • Time is measured in seconds (s)
  • Mass is measured in kilograms (kg)

ITS A LAW
17
Prefixes
  • Prefixes correspond to powers of 10
  • Each prefix has a specific name
  • Each prefix has a specific abbreviation
  • The prefixes can be used with any base units
  • They are multipliers of the base unit
  • Examples
  • 1 mm 10-3 m
  • 1 mg 10-3 g

18
Fundamental Derived Quantities
  • In mechanics, three fundamental quantities are
    used
  • Length
  • Mass
  • Time
  • Will also use derived quantities
  • These are other quantities that can be expressed
    as a mathematical combination of fundamental
    quantities
  • Density is an example of a derived quantity It
    is defined as mass per unit volume
  • Units are kg/m3

19
Dimensional Analysis
  • Technique to check the correctness of an equation
    or to assist in deriving an equation. Dimension
    has a specific meaning it denotes the physical
    nature of a quantity
  • Dimensions (length, mass, time, combinations) can
    be treated as algebraic quantities
  • Add, subtract, multiply, divide
  • Both sides of equation must have the same
    dimensions
  • Dimensions are denoted with square brackets
  • Length L
  • Mass M
  • Time T
  • Cannot give numerical factors this is its
    limitation

20
Dimensional Analysis, example
  • Given the equation x 1/2 a t2
  • Check dimensions on each side
  • The T2s cancel, leaving L for the dimensions of
    each side
  • The equation is dimensionally correct
  • There are no dimensions for the constant

21
Conversion of Units
  • When units are not consistent, you may need to
    convert to appropriate ones
  • Units can be treated like algebraic quantities
    that can cancel each other out
  • Always include units for every quantity, you can
    carry the units through the entire calculation
  • Multiply original value by a ratio equal to one
  • The ratio is called a conversion factor
  • Example

22
Order of Magnitude
  • Approximation based on a number of assumptions
  • May need to modify assumptions if more precise
    results are needed
  • Order of magnitude is the power of 10 that
    applies
  • In order of magnitude calculations, the results
    are reliable to within about a factor of 10

23
Uncertainty in Measurements
  • There is uncertainty in every measurement, this
    uncertainty carries over through the calculations
  • Need a technique to account for this uncertainty
  • We will use rules for significant figures to
    approximate the uncertainty in results of
    calculations

24
Significant Figures
  • A significant figure is one that is reliably
    known
  • Zeros may or may not be significant
  • Those used to position the decimal point are not
    significant
  • To remove ambiguity, use scientific notation
  • In a measurement, the significant figures include
    the first estimated digit
  • 0.0075 m has 2 significant figures
  • The leading zeroes are placeholders only
  • Can write in scientific notation to show more
    clearly 7.5 x 10-3 m for 2 significant figures
  • 10.0 m has 3 significant figures
  • The decimal point gives information about the
    reliability of the measurement
  • 1500 m is ambiguous
  • Use 1.5 x 103 m for 2 significant figures
  • Use 1.50 x 103 m for 3 significant figures
  • Use 1.500 x 103 m for 4 significant figures

25
Operations with Significant Figures
  • When multiplying or dividing, the number of
    significant figures in the final answer is the
    same as the number of significant figures in the
    quantity having the lowest number of significant
    figures.
  • Example 25.57 m x 2.45 m 62.6 m2
  • The 2.45 m limits your result to 3 significant
    figures
  • When adding or subtracting, the number of decimal
    places in the result should equal the smallest
    number of decimal places in any term in the sum.
  • Example 135 cm 3.25 cm 138 cm
  • The 135 cm limits your answer to the units
    decimal value

26
Rounding
  • Last retained digit is increased by 1 if the last
    digit dropped is 5 or above
  • Last retained digit is remains as it is if the
    last digit dropped is less than 5
  • Saving rounding until the final result will help
    eliminate accumulation of errors

27
Coordinate Systems
  • Used to describe the position of a point in space
  • Coordinate system consists of
  • A fixed reference point called the origin
  • Specific axes with scales and labels
  • Instructions on how to label a point relative to
    the origin and the axes

28
Cartesian Coordinate System
  • Also called rectangular coordinate system
  • x- and y- axes intersect at the origin
  • Points are labeled (x,y)
  • 3 coordinates (x,y,z) are enough to define the
    position of a particle in space

29
Polar Coordinate System
  • Origin and reference line are noted
  • Point is distance r from the origin in the
    direction of angle ?, ccw from reference line
  • Points are labeled (r,?)

30
Polar to Cartesian Coordinates
  • Based on forming a right triangle from r and q
  • x r cos q
  • y r sin q

Cartesian to Polar
  • r is the hypotenuse and q an angle
Write a Comment
User Comments (0)
About PowerShow.com