Materiale electrotehnice noi - PowerPoint PPT Presentation

About This Presentation
Title:

Materiale electrotehnice noi

Description:

... electrical & mecanical properties, ... PVC and LDPE with SiO2 nanoparticles of 15 nm diameter PP, PVC and LDPE with TiO2 nanoparticles of 15 nm diameter PP, ... – PowerPoint PPT presentation

Number of Views:277
Avg rating:3.0/5.0
Slides: 38
Provided by: FC106
Category:

less

Transcript and Presenter's Notes

Title: Materiale electrotehnice noi


1
Materiale electrotehnice noi
  • Nanodielectrici

2
Structura disciplinei
Capitolul Continutul
1 Fenomene in materialele electrotehnice 1.1. Conductia electrica 1.2. Polarizarea electrica 1.3. Magnetizarea materialelor 1.4. Pierderi in materialele electrotehnice
2 Materiale conductoare noi 2.1. Materiale conductoare clasice 2.2. Materiale supraconductoare 2.3. Conductori organici si nanotuburi de carbon 2.4. Materiale pentru realizarea de memristori 2.5. Aplicatii moderne ale materialelor conductoare
3 Materiale semiconductoare noi 3.1. Materiale semiconductoare clasice 3.2. Polimeri semiconductori 3.3. Materiale semiconductoare nanostructurate 3.4. Aplicatii moderne (celule solare, microprocesoare de inalta frecventa, ecrane TV, laseri)
4 Materiale dielectrice noi 4.1. Evolutia materialelor dielectrice 4.2. Straturi subtiri 4.3. Nanodielectrici 4.4. Oxizi metalici 4.5. Aplicatii
5 Materiale magnetice noi 5.1. Evolutia materialelor magnetice 5.2. Materiale magnetice amorfe 5.3. Materiale magnetice nanostructurate (nanocristaline, organice) 5.4. Fire si filme subtiri din materiale magnetice 5.5. Aplicatii moderne (miezuri magnetice, memorii, hard-discuri, carduri magnetice)
3
Nanodielectrici
  • Polymer nanocomposites as dielectrics
  • Characterisation nanostructure, electrical
    mecanical properties, thermal stability
  • Numerical modeling of nanodielectrics
  • Possible applications of polymer nanocomposites
    in Electrical Engineering

4
Nanodielectrici
  • Polymer nanocomposites as dielectrics
  • Characterisation nanostructure, electrical
    mecanical properties, thermal stability
  • Numerical modeling of nanodielectrics
  • Possible applications of polymer nanocomposites
    in Electrical Engineering

5
  • 1994 Symbolic birth of Nanodielectrics
  • John Lewis published the paper Nanometric
    Dielectrics in
  • IEEE Transactions on Dielectrics and Electrical
    Insulation
  • Nanodielectrics Polymer nanocomposites with
    dielectric properties
  • polymers (PA, PE, PP, PVC, epoxy resins,
    silicone rubbers)
  • nano-fillers (LS, SiO2, TiO2, Al2O3)
  • 1 to 100 nm in size,
  • 1 to 10 wt in content
  • homogeneously dispersed in the polymer
    matrix.
  • 2002 First experimental data on nanometric
    dielectrics.
  • 2002-2008 Articles in the field reported that
  • nano-filler addition has the potential of
    improving the electrical, mechanical and thermal
    properties as compared to the neat polymers
  • polymer nanocomposites are increasingly
    desirable as coatings, structural and packaging
    materials in automobile, civil, aerospace and
    electrical engineering.
  • 2006-2008 Project CEEX- PoNaDIP

6
Steps of the research
Characterization
Design Realizing
Structure-Property Relationship
Modeling
7
Design realizing
  • Research at UPB-ELMAT
  • 14 combinations polymer nanofiller
  • Plane samples 10 X 10 cm2, thickness 1 mm
  • Nanofillers1 to 100 nm in size, 1 to 10 wt in
    content, and homogeneously dispersed in the
    polymer matrix

POLYMER thermoplastic thermoset
NANOFILLER organic inorganic
8
Design realizing
  • Nanocomposites investigated
  • PP, PVC and LDPE with SiO2 nanoparticles of 15 nm
    diameter
  • PP, PVC and LDPE with TiO2 nanoparticles of 15 nm
    diameter
  • PP, PVC and LDPE with Al2O3 nanoparticles of 40
    nm diameter
  • nanofillers content 2, 5 and 10 wt.
  • Manufacturing by direct mixing method
  • Samples for electrical tests plaques of square
    shape (10 x 10 cm2) having the thickness of 0.5
    mm.

Installation for nanocomposite manufacturing
9
Nanodielectrici
  • Polymer nanocomposites as dielectrics
  • Characterisation nanostructure, electrical
    mecanical properties, thermal stability
  • Numerical modeling of nanodielectrics
  • Possible applications of polymer nanocomposites
    in Electrical Engineering

10
Nanostructure SEM at ICECHIM
Characterization
LDPE - SiO2
11
  • Electrical properties
  • Dielectric Spectroscopy at UPB/ELMAT
  • real part of the permittivity ( )
  • loss tangent (tan d)
  • dielectric spectroscopy Novocontrol ALPHA-A
    Analyzer (3) in combination with an Active Sample
    Cell ZGS (4) and a Temperature Control System
    Novotherm (5)
  • frequency range 10-3 106 Hz

Characterization
12
Electrical properties Dielectric Spectroscopy at
UPB/ELMAT
Results for PP nanocomposites with Al2O3, SiO2
and TiO2 fillers at T 300 K
13
Electrical properties Dielectric Spectroscopy at
UPB/ELMAT
Results for PVC nanocomposites with Al2O3, SiO2
and TiO2 fillers at T 300 K
14
Electrical properties Dielectric Spectroscopy at
UPB/ELMAT
Results for LDPE nanocomposites with Al2O3, SiO2
and TiO2 fillers at T 300 K
15
Electrical properties Dielectric Spectroscopy at
UPB/ELMAT
Results for LDPE - Al2O3 nanocomposites, for
different filler concentration, at T 300 K
16
  • Electrical properties
  • Absorption-Resorption Currents at UPB/ELMAT
  • Resistivity
  • Keithley 6517 Electrometer in combination
    Keithley 8009 Test Fixture

Characterization
17
Electrical properties Absorption-Resorption
Currents at UPB/ELMAT
Characterization
18
Characterization
Electrical properties Resistivity of LDPE
nanocomposites at UPB/ELMAT
Material Relative volume resistivity at 10 V Relative volume reisistivity at 500 V
Unfilled LDPE 1 1
LDPE with 5 wt nano-SiO2 39.39 0.54
LDPE with 5 wt nano-Al2O3 6.08 0.19
LDPE with 5 wt nano-TiO2 4.09 0.72
19
  • Mechanical properties at ICECHIM
  • LDPE SiO2 and LDPE Al2O3 nanocomposites
  • According to ISO 527 on specimens type IB (5
    specimens for each test) with 50 mm/min for
    tensile strength and 2 mm/min for modulus of
    elasticity.

Characterization
20
Nanodielectrici
  • Polymer nanocomposites as dielectrics
  • Characterisation nanostructure, electrical
    mecanical properties, thermal stability
  • Numerical modeling of nanodielectrics
  • Possible applications of polymer nanocomposites
    in Electrical Engineering

21
Ideas multi-core model
(Tanaka)
Numerical model at UPB/ELMAT
Modeling
22
Numerical model at UPB/ELMAT
3D Model
  • Sample features
  • thickness 1 mm
    - diameter of the nanoparticle 40 nm
    - thickness
    if the interface 10 nm

    - filler content 5
    - relative
    permittivities
  • nanoparticle/interface/matrix 10/6/2.2

Modeling
interface
23
Numerical model at UPB/ELMAT
Electrostatic field
div (e grad V) 0
V electric scalar potential e electric
permittivity
Modeling
24
Numerical model at UPB/ELMAT
Computational domain in FLUX 3D
  • Main data of the numerical model
  • dimension of the elementary cube 120 nm along
    each axis
    - nanoparticle diameter 40 nm
  • - thickness of the interface 10 nm

    - concentration
    of nanoparticles 5
  • - relative electric permittivities
  • nanoparticle/interface/matrix 10/6/2.2

    - applied voltage 0.02 V

Modeling
25
Numerical model at UPB/ELMAT
Descretization mesh - finite element method
  • Size of the mesh
  • 6784 nodes
    - 41770 volume finite elements
  • - tethrahedral elements

Modeling
26
Numerical model at UPB/ELMAT
Computation of the equivalent permittivity
1) Computation of the electric energy stored in
the material samples

2) Computation of the capacitance
of the elementar capacitor by using two different
methods 3) Evaluation of the equivalent rel.
electric permittivity er eq
Modeling
27
Numerical model at UPB/ELMAT
Numerical resultsElectric scalar potential
color map
Modeling
Without nanoparticles With
nanoparticles
28
Numerical model at UPB/ELMAT
Numerical resultsElectric field strength color
map
Without nanoparticles With
nanoparticles
Modeling
29
Numerical model at UPB/ELMAT
Parametric study
  • filler content fc
  • diameter of the nanoparticle dn
  • thickness of the interface ti
  • relative permittivity of the polymer matrix erm
  • relative permittivity of the interface eri
  • relative permittivity of the nanofiller ern

Modeling
30
Numerical model at UPB/ELMAT
Numerical resultsequivalent permittivity vs.
interface permittivity
ere f(eri) fc 5 dn 40 nm ti 10 nm erm
2.2 ern 10 eri 3 4 5 6 7 8
Modeling
31
Numerical model at UPB/ELMAT
Numerical resultsequivalent permittivity vs. the
thickness of the interface layer
ere f(ti) fc 5 dn 40 nm ti 5 10
15 20 nm rvi 0 erm 2.2 ern 10 eri 4
Modeling
32
Numerical model at UPB/ELMAT
Numerical resultsequivalent permittivity vs. the
diameter ofthe nanoparticle
ere f(dn) fc 5 dn 10 20 30 40 50
nm ti 10 nm erm 2.2 ern 10 eri 4
Modeling
33
Numerical model at UPB/ELMAT
Numerical resultsequivalent permittivity vs.
nanoparticle permittivity
ere f(ern) fc 5 dn 40 nm ti 10 nm erm
2.2 ern 4 10 eri 2.2
Modeling
34
Numerical model at UPB/ELMAT
Particle agglomeration
Modeling
35
Numerical model at UPB/ELMAT
Particle agglomeration isolated particles
Modeling
36
Nanodielectrici
  • Polymer nanocomposites as dielectrics
  • Characterisation nanostructure, electrical
    mecanical properties, thermal stability
  • Numerical modeling of nanodielectrics
  • Possible applications of polymer nanocomposites
    in Electrical Engineering

37
  • Nanocomposite applications in Electrical
    engineering at ETN-EE
  • Manufacturing and testing of coil holders
  • Selected materials LDPE Al2O3 and LDPE SiO2
    with 2 filler content.
  • Coil holders made from selected nanocomposites
    have better behaviour as compared with those from
    the neat polymer (dielectric strength, mecanical
    properties and, obviously, flame retardancy)
Write a Comment
User Comments (0)
About PowerShow.com