Title: Calculation of x-ray absorption spectra
1Calculation of x-ray absorption spectra
- Christian Brouder
- Institut de Minéralogie et de Physique des
Milieux Condensés
2Theoretical approaches
A bit of history One body Two bodies Many bodies
3The malediction of XAFS calculations
Kronig (1931) Petersen (1932) Bogdanovich
(1937) Natoli (1980)
4The main approaches
One-body calculation
Two-body calculations
Many-body calculations
5One-body
s(E) 4p2a E Snltfne.rf0gt2 d(en-e0-E) (-D
V(r)) fn(r) en fn(r) V VcVxc DFT LDA
Kohn-Sham V VcS Green function
theory f0(r) core-hole wavefunction
6Multiple-scattering theory
Indras net Avatamsaka sutra
The book of Buddha garlands (400) Lord Rayleigh
(1892) Kasterin (1897) Korringa (1945,1947) Kohn
Rostoker (1953)
7The muffin-tin approximation
Spherical atoms in a constant interstitial
potential
8The muffin-tin approximation
Spherical atoms in a constant interstitial
potential
9Muffin-tin programs
CONTINUUM (Natoli, 1980) ICXANES (Durham et al.,
1982) http//cpc.cs.qub.ac.uk/summaries/AAR
R.html FEFF8 (Rehr et al., 1991)
http//leonardo.phys.washington.edu/feff/ SPRKKR
(Ebert et al., 1998) relativistic
olymp.cup.uni-muenchen.de/ak/ebert/SPRKKR/ MXAN
(Benfatto et al., 2002)
maurizio.benfatto_at_lnf.infn.it PY-LMTO (Antonov et
al., 2001) relativistic LMTO
yaresko_at_mpipks-dresden.mpg.de
10Non muffin-tin
11Non-muffin-tin programs
FPX (Foulis, 1986-2002) Non-muffin-tin
multiple scattering www.esrf.fr/computing/scie
ntific/fpx/fpx.htm WIEN2k (Blaha et al., 1998)
FP-LAPW www.wien2k.at/ FDMNES (Joly, 2001)
Finite difference method 147.173.148.95/LDC/LE
_LABORATOIRE/Equipes_de_recherche/EQUIPE_SPECTROSC
OPIE/SIMUL/EtudFond_Prog.asp
12Non-muffin-tin programs
PARATEC (Cabaret et al., 2002)
pseudopotential www-ext.lmcp.jussieu.fr/cabare
t/xanes.html EXC!TING (Dewhurst et al., 2006)
FP-LAPW exciting.sourceforge.net/ STOBE
(Saint-Amant et al., 1992) LCAO
www.fhi-berlin.mpg.de/th/th.html
13Two-body
Bethe-Salpeter LL0L0KL L0(1212)G(1,2)G(2,1
) The dielectric response ?(x,y) ?
lt0j(x),j(y)0gt can be obtained from L
14BS TDDFT programs
ADF (Stener et al., 2003) TDDFT
www.scm.com/ DP (Olevano et al., 1999) TDDFT
pseudopotential theory.polytechnique.fr/codes/d
p/dp.html EXC Bethe-Salpeter pseudopotential
theory.polytechnique.fr/codes/exc/exc.html NBSE
(Shirley, 1998) Bethe-Salpeter
pseudopotential physics.nist.gov/Divisions/Div8
44/staff/Gp4/shirley.html
15Many-body
Many-body states
s(E) 4p2a E SnltFne.rF0gt2 d(en-e0-E) (-D
SiVn(ri) SijVe(rij)) Fngt en Fngt F0gt
many-body ground state
16Multiplet programs
TT-MULTIPLETS (Thole et al., 1990)
www.anorg.chem.uu.nl/people/staff/FrankdeGroot/ttm
ultiplets.htm/ Cluster (Kotani et al., 1992)
theo.phys.okayama-u.ac.jp/okada/index_e.html/
AMARCORD (Mirone, 2000) www.esrf.fr/computing/
scientific/people/mirone/amarcord/
17Problems
Green functions and KS-(TD)DFT One-particle
orbitals are occupied or not Restricted to
closed shell systems Multiplets parametrized
very small systems
18Unifying approaches
Multichannel multiple scattering Krüger and
Natoli (2004) TDDFT for open shells in
progress (E.K.U Gross and coll.) Green functions
with correlation in progress
19 Long-term program
CORRELATION