Basics%20of%20Rietveld%20Refinement - PowerPoint PPT Presentation

About This Presentation
Title:

Basics%20of%20Rietveld%20Refinement

Description:

... statistics appropriate step size sample transparency surface roughness preferred orientation particle size go to XRD Basics pg 102 Describing the Crystal ... – PowerPoint PPT presentation

Number of Views:444
Avg rating:3.0/5.0
Slides: 26
Provided by: ScottAS4
Category:

less

Transcript and Presenter's Notes

Title: Basics%20of%20Rietveld%20Refinement


1
Basics of Rietveld Refinement
  • Scott A Speakman
  • 13-4009A
  • x3-6887
  • speakman_at_mit.edu

2
Uses of the Rietveld Method
  • The Rietveld method refines user-selected
    parameters to minimize the difference between an
    experimental pattern (observed data) and a model
    based on the hypothesized crystal structure and
    instrumental parameters (calculated pattern)
  • can refine information about a single crystal
    structure
  • confirm/disprove a hypothetical crystal structure
  • refine lattice parameters
  • refine atomic positions, fractional occupancy,
    and thermal parameter
  • refine information about a single sample
  • preferred orientation
  • refine information about a multiphase sample
  • determine the relative amounts of each phase

3
Requirements of Rietveld Method
  • High quality experimental diffraction pattern
  • a structure model that makes physical and
    chemical sense
  • suitable peak and background functions

4
Obtaining High Quality Data
  • issues to consider
  • aligned and calibrated instrument
  • beam overflow problems
  • thin specimen error
  • good counting statistics
  • appropriate step size
  • sample transparency
  • surface roughness
  • preferred orientation
  • particle size
  • go to XRD Basics pg 102

5
Describing the Crystal Structure
  • space group
  • lattice parameters
  • atomic positions
  • atomic site occupancies
  • atomic thermal parameters
  • isotropic or anisotropic

6
The Crystal Structure of LaB6
  • LaB6
  • Space Group Pm-3m (221)
  • Lattice Parameter a4.1527 A

Atom Wyckoff Site x y z B occ.
La 1a 0 0 0 0.00157 1
B 6f 0.1993 0.5 0.5 0.0027 1
7
Where to get crystal structure information
  • check if the structure is already solved
  • websites
  • Inorganic Crystal Structure Database (ICSD)
    http//icsd.ill.fr/icsd/index.html
  • 4 is available for free online as a demo
  • Crystallography Open Database http//www.crystallo
    graphy.net/
  • Mincryst http//database.iem.ac.ru/mincryst/index.
    php
  • American Mineralogist http//www.minsocam.org/MSA/
    Crystal_Database.html
  • WebMineral http//www.webmineral.com/
  • databases
  • PDF4 from the ICDD
  • Linus Pauling File from ASM International
  • Cambridge Structure Database
  • literature
  • use the PDF to search ICSD listings and follow
    the references
  • look for similar, hopefully isostructural,
    materials
  • index the cell, and then try direct methods or
    ab-initio solutions
  • beyond the scope of todays class

8
Instrumental Parameters
  • background
  • peak profile parameters
  • cagliotti parameters u, v, w
  • pseudo-voigt or other profile parameters
  • asymmetry correction
  • anisotropic broadening
  • error correcting parameters
  • zero shift
  • specimen displacement
  • absorption
  • extinction
  • roughness
  • porosity

9
How many parameters can we refine?
  • Each diffraction peak acts as an observation
  • theoretically, refine n-1 parameters
  • refining a tetragonal LaNi4.85Sn0.15 crystal
    structure, there might be
  • scale factor
  • 2nd order polynomial background 3 parameters
  • 2 lattice parameters
  • no atomic positions (all atoms are fixed)
  • 3 or 5 thermal parameters
  • 2 or 4 occupancy factors
  • zero shift and specimen displacement
  • 5 profile shape parameters
  • 22 parameters maximum with 43 peaks (20 to 120
    deg 2theta)
  • does this mean we can refine all parameters?

10
background functions
  • manually fit background
  • polynomial
  • chebyshev
  • shifte chebyshev
  • amorphous sinc function
  • many others for different programs

11
profile functions
  • vary significantly with programs
  • almost all programs use Cagglioti U, V, and W
  • HSP uses pseudo-voigt, Pearson VII, Voigt, or
    pseudo-voigt 3 (FJC asymmetry)
  • GSAS uses functions derived more from neutron and
    synchrotron beamlines

12
  • go to parameters_calc_pattern.pdf

13
How do you know if a fit is good?
  • difference pattern
  • Residuals R
  • R is the quantity that is minimized during
    least-squares or other fitting procedures
  • Rwp is weighted to emphasize intense peaks over
    background
  • Rexp estimates the best value R for a data set
  • an evaluation of how good the data are
  • RBragg tries to modify the R for a specific phase
  • GOF (aka X2)

14
Refinement Strategy
  • Rietveld methods fit a multivarialbe
    structure-background-profile model to
    experimental data
  • lots of potential for false minima, diverging
    solutions, etc
  • need to refine the most important variables
    first, then add more until an adequate solution
    is realized
  • a correct solution may not result

15
Ray Youngs Refinement Strategy
  • scale factor
  • zero shift or specimen displacement (not both)
  • linear background
  • lattice parameters
  • more background
  • peak width, w
  • atom positions
  • preferred orientation
  • isotropic temperature factor B
  • u, v, and other profile parameters
  • anisotropic temperature factors

16
HSP Automatic Refinement Strategy
  • Very similar to Prof Youngs recommendations
  • a good choice for beginners
  • you can set limits on any of these parameters

17
Additional Files
  • XRD_Basics_HSP_2006.pdf
  • large collection of information about X-ray
    diffraction, instrumentation, and different
    techniques
  • XPert HighScore Plus Tutorial.pdf
  • overview of the different functionality available
    in HighScore Plus
  • Introduction.pdf
  • overview of Rietveld
  • parameters_calc_patterns.pdf
  • overview of parameters involved in calculating a
    diffraction pattern

18
further reading
  • Rietveld refinement guidelines, J. Appl.Cryst.
    32 (1999) 36-50
  • R.A. Young (ed), The Rietveld Method, IUCr 1993
  • V.K. Pecharsky and P.Y. Zavalij, Fundamentals of
    Powder Diffraction and Structural
    Characterization of Materials, Kluwer Academic
    2003.
  • DL Bish and JE Post (eds), Modern Powder
    Diffraction, Reviews in Mineralogy vol 20, Min.
    Soc. Amer. 1989.
  • CCP14 website http//www.ccp14.ac.uk/tutorial/tuto
    rial.htm
  • prism.mit.edu/xray/resources.htm

19
Rietveld Programs
  • Free
  • GSAS ExpGUI
  • Fullprof
  • Rietica
  • PSSP (polymers)
  • Maud (not very good)
  • PowderCell (mostly for calculating patterns and
    transforming crystal structures, limited
    refinement)
  • Commercial
  • PANalytical HighScore Plus
  • Bruker TOPAS (also an academic)
  • MDI Jade or Ruby

20
Examples
  • Silicon
  • LaB6
  • intermetallic LaNi4.85Sn0.15

21
Silicon
  • Open the datafile in HSP
  • Add the structure model
  • insert the structure manually
  • import (insert) a struture file
  • usually use the CIF format the ubiquitous
    standard for crystal structures
  • HSP can also import ICSD .cry files and
    structures from other refinement programs
  • GSAS can import CIF or PowderCell files
  • try the automatic refinement
  • manually improve the fit

22
Silicon Crystal Structure
  • Fd3m
  • which setting? (2)
  • a5.43 A
  • Si at 0.125, 0.125, 0.125

23
Lanthanum hexaboride LaB6
  • Open the datafile
  • insert the crystal structure CIF file
  • Note that boron (z5) makes little difference in
    the XRD pattern compared to the lanthanum (z57)
  • what can we do to improve the fit

24
LaNi4.85Sn0.15
  • The data was taken from Chapter 6 of Fundamentals
    of Powder Diffraction and Structural
    Characterization of Materials, by Pecharsky and
    Zavalij
  • The structure is a bit more complex that our
    earlier example, which allows us to explore more
    features of HighScore Plus
  • The data (Ch6_1.raw) is in GSAS format, which can
    be read into HighScore Plus
  • I have also included a CIF file from the ICSD
    (104685) with all the main features of the
    structure described

25
Issue to Consider
  • How can I work without knowledge of the
    structure?
  • Use LeBail or Pawley method to determine lattice
    parameters
  • Try indexing and solving the structure using the
    HighScore Plus tools
  • You will find that there are 16 possible space
    groups for this material, but picking the most
    common (and simplest) choice, P6/mmm, is the
    right way to go
  • Where do I put the atoms?
  • You can use a Fourier map to find out wherein the
    structure the electron densities are greatest.
    Put the heaviest atoms (La) at these sites, then
    work your way through the chemistry
  • What variables do I refine and in what sequence?
  • Take a look at the automatic option in HSP -
    this is not a bad strategy to use. We will go
    through these in detail
Write a Comment
User Comments (0)
About PowerShow.com