???????????????? MSI - PowerPoint PPT Presentation

About This Presentation
Title:

???????????????? MSI

Description:

Logic Design with MSI Circuits MSI – PowerPoint PPT presentation

Number of Views:735
Avg rating:3.0/5.0
Slides: 48
Provided by: acth
Category:
Tags: msi | full | nand | subtractor | using

less

Transcript and Presenter's Notes

Title: ???????????????? MSI


1
Logic Design with MSI Circuits
  • ??????????????????????
  • ???????????????? MSI
  • ????????????????????? MSI ??????????????????
  • ????????????????????? MSI ????????????????????????
    ???? ???

2
Type of Circuits
???????? ?????????????????????????????????????
1,000,000 ??? ?????? ?????????????? ULSI
(Ultra-large-scale integration)
3
Multiplexers (MUXs)
  • also called a data selector
  • Input lines consist of
  • - data lines 2n lines
  • - select lines n lines
  • there may or may not be an enable line
  • Output line
  • output line 1 line

4
Multiplexer Function
  • Truth table of a 41 multiplexer (without enable)

Select inputs Select inputs Output
S1 S0 Y
0 0 I0
0 1 I1
1 0 I2
1 1 I3
5
Multiplexer Function
  • Truth table of a 41 multiplexer (with enable)

Enable Select inputs Select inputs Output
E S1 S0 Y
0 X X 0
1 0 0 I0
1 0 1 I1
1 1 0 I2
1 1 1 I3
6
Logic Circuit Design using Multiplexer
  • Advantages
  • No need for logic simplification
  • Minimize the IC package count
  • Simplify the logic design

7
Logic Design using MUX
  • Case 1 Number of inputs is equal to number of
    select lines
  • Design procedure
  • Identify the decimal number corresponding to each
    minterm in the expression
  • Connect logic 1 level to input lines
    corresponding to these numbers
  • Connect logic 0 level to the others
  • Connect inputs to selected lines

8
Case1 Inputs Select lines
a three-variable function using a 8-to-1-line
multiplexer
9
Example
f(x,y,z) ?m(0,2,3,5) using 8-to-1-line
multiplexer
10
Logic Design using MUX
  • Case 2 Number of inputs is higher than number of
    select lines
  • Procedure 2.1 Reduce the number of inputs to the
    number of select lines by
  • inspection
  • k-map

11
Case 2
  • Truth table of a 3 variable logic circuit

Input Input Input Output
x y z Y
0 0 0 f0
0 1 0 f2
1 0 0 f4
1 1 0 f6
Input Input Input Output
x y z Y
0 0 1 f1
0 1 1 f3
1 0 1 f5
1 1 1 f7
12
Case2.1 Reducing Inputs
a 3-variable Boolean function using a 4-to-1-line
multiplexer
13
Example
f(x,y,z) ?m(0,2,3,5) using a 4-to-1-line
multiplexer
14
Reducing Inputs with K-map
15
Example
f(x,y,z) ?m(0,2,3,5)
16
More on Reducing Inputs
(a) Applying input variables y and z to the S1
and S0 select lines. (b) Applying input
variables x and y to the S0 and S1 select lines.
17
Example
f(x,y,z) ?m(0,2,3,5) (a) Applying input
variables y and z to the S1 and S0 select lines.
(b) Applying input variables x and y to the S0
and S1 select lines.
18
Reducing 4-input to 3-input
19
Example
f(w,x,y,z) ?m(0,1,5,6,7,9,12,15)
20
Logic Design using MUX
  • Procedure 2.2 Use multiplexer tree
  • when number of inputs exceeds the largest number
    of inputs on available ICs
  • Can be done by one of these two techniques
  • connect the MSB input to the enable/strobe input
  • connect the MSB input to another multiplexer

21
Demultiplexers/Decoders
  • Performs the reverse operation of a multiplexer
  • Input lines are
  • 1 data line
  • n select lines
  • maybe 1 enable
  • Output lines are
  • - 2n output lines

22
Application Example
A multiplexer/demultiplexer arrangement for
information transmission
23
Decoders
A n-to-2n-line decoder is a circuit that only one
of the output line responds to the n-input
data. Number of inputoutput is n2n (Note a
demultiplexer is a decoder
with an enable input acting as a data
input line A BCD to 7-segment decoder is
a circuit that 7-bit output will make each
segment of the 7-segment lit according to the
4-bit input
24
3-to-8-line Decoder
25
Application Example
?????? 3-to-8-line decoder ??? or-gate
?????????????? f1(x2,x1,x0) ?m(1,2,4,5) ???
f2(x2,x1,x0) ?m(1,5,7)
26
Application Example
f1(x2,x1,x0) ?m(0,1,3,4,5,6) ?m(2,7) and
f2(x2,x1,x0) ?m(1,2,3,4,6)
?m(0,5,7)
27
Application Example
f1(x2,x1,x0) ?M(0,1,3,5) and f2(x2,x1,x0)
?M(1,3,6,7) (a) Using output or-gates. (b)
Using output nor-gates.
28
3-to-8-line decoder using nand-gates
29
Application Example
f1(x2,x1,x0) ?m(0,2,6,7) and f2(x2,x1,x0)
?m(3,5,6,7) (a) Using output
and-gates. (b) Using output nand-gates.
30
Decoder with Enable Input
And-gate 2-to-4-line decoder with an enable input
31
Encoders
- Similar to decoders - Usually number of input
lines are more than number of output lines Number
of inputoutput is 2nn
32
Binary Adders
Binary Half-Adder Binary
Full-Adder
33
Binary Full-Adder
si xi'.yi'.cixi'.yi.ci'xi.yi'.ci'xi.yi.ci
ci1 xi.yi xi.ci yi.ci
34
Parallel Binary Adder
Parallel (ripple) binary adder
35
Binary Subtractor
Binary Half-Subtractor Binary
Full-Subtractor
36
Parallel Binary Subtractor
Parallel (ripple) binary subtractor
37
Parallel Binary Adder/Subtractor
38
Carry Look-ahead Adder
From Boolean expression of the F.A. ci1 xiyi
(xiyi)ci Lets gi xiyi (carry-generate
function) and pi (xiyi) (carry-propagate
function) c1 g0 p0c0 c2 g1 p1c1
g1 p1(g0 p0c0) g1 p1g0 p1p0c0
39
Carry Look-ahead Adder (cont.)
c3 g2 p2c2 g2 p2(g1 p1g0
p1p0c0) g2 p2g1 p2p1g0
p2p1p0c0 ... ci1 gi pigi-1 pipi-1gi-2
... pipi-1...p1g0 pipi-1...p0c0
40
Carry Look-ahead Adder (cont.)
?
?
?
41
BCD Arithmetic
  • BCD Adder
  • Using a 4-bit binary adder to perform two one
    digit BCD addition
  • a decimal 6 (binary 0 1 1 0) will be added to the
    result if the sum output is an invalid BCD or if
    a carry at the MSB is 1
  • each BCD adder can be cascaded for adding several
    BCD digits

42
BCD Arithmetic
  • BCD Subtractor
  • Convert the subtrahend to its 9s complement form
  • Add the result to the minuend
  • If the summation result is an invalid BCD code or
    if the carry from the MSB is 1, add decimal 6
    (binary 0 1 1 0) and the end around carry (EAC)
    to this sum
  • If the summation result is a valid BCD code, the
    result is negative and in the 9s complement form

43
Nines Complementer Circuit
  • A 9s complementer circuit is
  • a circuit designed to convert a decimal digit (in
    BCD code) to its 9s complement
  • created by adding binary 1 0 1 0 to the 1s
    complement of the number (ignore the carry)
  • (Proof is left as a student exercise)

44
Arithmetic Logic Unit (ALU)
  • performs arithmetic and logic operations (depends
    on the selected mode)
  • Read details and example in section 6.6

45
Comparators
A comparator is a circuit that compares the
magnitudes of two binary numbers Input Ai, Bi,
Gi, Ei, Li Gi 1 when Ai-1Ai-2...A1A0 gt
Bi-1Bi-2...B1B0 Ei 1 when Ai-1Ai-2...A1A0
Bi-1Bi-2...B1B0 Li 1 when Ai-1Ai-2...A1A0 lt
Bi-1Bi-2...B1B0 Output Gi1, Ei1, Li1 Gi1
1 when AiAi-1...A1A0 gt BiBi-1...B1B0 Ei1 1
when AiAi-1...A1A0 BiBi-1...B1B0 Li1 1 when
AiAi-1...A1A0 lt BiBi-1...B1B0
46
1-bit Comparator
47
Other MSI Circuits
  • Parity generators/checkers
  • Code converters
  • BCD-to-binary converter
  • Binary-to-BCD converter
  • Priority encoders
  • Decimal-to-BCD encoder
  • Octal-to-binary Encoder
  • Decoder/drivers for display devices
  • BCD-to-decimal decoder/driver
  • BCD-to-7-segment decoder/driver
Write a Comment
User Comments (0)
About PowerShow.com