MSI%20Combinational%20logic%20circuits - PowerPoint PPT Presentation

About This Presentation
Title:

MSI%20Combinational%20logic%20circuits

Description:

Realize Boolean function f = A'B' AB with a 2:4 decoder 74139. CS 3402--Digital Logic ... Exercises. p.319 4.3, 4.4, 4.5, 4.9, 4.15, 4.16, 4.18, 4.19, 4.20, ... – PowerPoint PPT presentation

Number of Views:978
Avg rating:3.0/5.0
Slides: 31
Provided by: ongardsiri
Learn more at: http://cms.dt.uh.edu
Category:

less

Transcript and Presenter's Notes

Title: MSI%20Combinational%20logic%20circuits


1
MSI Combinational logic circuits
2
Outline
  • Decoders
  • Multiplexers

3
Decoders/Demultiplexers
  • A decoder is a combinational circuit that
    converts binary information from n inputs to a
    maximum of unique 2n output lines. If n bit
    decoded information has unused or don't care
    combination, the decoder output will have less
    than 2n outputs.

4
Decoders/Demultiplexers
  • 12 Decoder

A D0 D1
0 1 0
1 0 1
5
Decoders/Demultiplexers
  • 24 Decoder

A B D0 D1 D2 D3
0 0 1 0 0 0
0 1 0 1 0 0
1 0 0 0 1 0
1 1 0 0 0 1
6
Example
  • Design a 2-input, 4-output combinational logic
    circuit to decode the 2-bit output of the
    following function table

Input Input Output Output Output Output
X Y A S M D
0 0 1 0 0 0
0 1 0 1 0 0
1 0 0 0 1 0
1 1 0 0 0 1
Function Code Code
Add 1 00
Sub 0 01
Mul 0 10
Div 0 11
7
Example
  • Full adder
  • S(A,B,C) ?m(1,2,4,7)
  • Cin(A,B,C) ?m(1,2,4,7)

8
Decoder with Enable
  • A decoder with an enable can function as a
    demultiplexer. A demultiplexer is a circuit that
    receives information on a single line and
    transmits this information on one of possible 2n
    lines. The selection of a specific output line
    is controlled by the bit values of n selection
    lines.

9
(No Transcript)
10
Standard MSI Decoders
11
Example
  • Realize Boolean function f A'B' AB with a 24
    decoder 74139.

12
38 Decoder
13
416 Decoder
14
Cascading decoders
  • Build a 416 decoder using two 74138 decoders.

15
Encoders
  • An encoder is a digital circuit that performs the
    inverse operation of a decoder. An encoder has
    2n (or fewer) input lines and n output lines.
    The output lines generate the binary code
    corresponding to the input value.

16
Example
  • A calculator has four function keys (add,
    subtract, multiply, divide). Only one of the
    function keys can be pressed at a time. When a
    particular key is pressed, that key is encoded
    according to the following function tab
  • X A'S'
  • Y A'M'

Input Input Input Input Output Output
Line A S M D X Y
1 1 0 0 0 0 0
2 0 1 0 0 0 1
3 0 0 1 0 1 0
4 0 0 0 1 1 1
Function Code Code
Add 1 00
Sub 0 01
Mul 0 10
Div 0 11
17
Example
  • X A'S'
  • Y A'M'

Input Input Input Input Output Output
Line A S M D X Y
1 1 0 0 0 0 0
2 0 1 0 0 0 1
3 0 0 1 0 1 0
4 0 0 0 1 1 1
18
Multiplexers/selectors
  • Multiplexing means transmitting a large number of
    information units over a smaller number of
    channels or lines. A digital multiplexer is a
    combination circuit that selects binary
    information from one of many input lines and
    directs it to a single output line. The
    selection of a particular input line is
    controlled by a set of selection lines.
    Normally, there are 2 input lines and selection
    lines whose bit combinations determine which
    input is selected.

19
2?1 Multiplexers
s0 z
0 I0
1 I1
20
2?1 Multiplexers
  • Z s0 I0 s1 I1

I1 I0 s0 Z
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
21
4?1 Multiplexers
  • Z s1 s0I0 s1s0 I1 s1s0 I2 s1s0 I3

s1 s0 Z
0 0 I0
0 1 I1
1 0 I2
1 1 I3
22
8?1 Multiplexers
s2 s1 s0 Z
0 0 0 I0
0 0 1 I1
0 1 0 I2
0 1 1 I3
1 0 0 I4
1 0 1 I5
1 1 0 I6
1 1 1 I7
  • Z s2s1s0I0 s2s1s0 I1 s2s1s0 I2 s2s1s0 I3
    s2s1s0I4 s2s1s0 I5 s2s1s0 I6 s2s1s0 I7

23
Alternative Implementation
  • The following diagrams show how to construct a 8
    ? 1 multiplexer using either 4 ? 1 multiplexers
    or
  • 2 ? 1 multiplexers.

24
(No Transcript)
25
Example
  • F(A,B,C) ?m(0,2,6,7)

A B C F
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1
26
Example
A B C F
0 0 0 1 C'
0 0 1 0 C'
0 1 0 1 C'
0 1 1 0 C'
1 0 0 0 0
1 0 1 0 0
1 1 0 1 1
1 1 1 1 1
27
Examples
  • Implement a 2 ? 1 multiplexer to
  • F(A,B,C) ?m(1,3,5,6)
  • Implement a 4 ? 1 multiplexer to
  • F(A,B,C,D) ?m(0,1,3,4,8,9.15)

28
Multiplexer devices
  • There are multiplexers devices in 7400 series,
  • 74150 16-to-1 multiplexer (24 pins)
  • 74151 8-to-1 multiplexer (16 pins)
  • 74153 4-to-1 multiplexer
  • 74157 2-to-1 multiplexer

29
Multiplexer devices
30
Exercises
  • p.319 4.3, 4.4, 4.5, 4.9, 4.15, 4.16, 4.18, 4.19,
    4.20, 4.21, 4.23, 4.25
Write a Comment
User Comments (0)
About PowerShow.com