Title: HYDRAULICS BEHAVIOR AND DESIGN CONCEPTUAL OF SPUR DIKE
1??????????????????????????????????????????????????
?
HYDRAULICS BEHAVIOR AND DESIGN CONCEPTUAL OF SPUR
DIKE
???? ???? ?????????????????????????????????????
2Outlines
? Introduction ? Governing Equations ? CIP
Method ? Results ? Design Conceptual
Ushitsu River, Shikoku, Japan
3Introduction
Snow Festival, 2004
4Spur Dike
5Spur Dike
6Governing Equation
Snow Festival, 2004
7Cartesian coordinate system
Continuity eq.
Momentum eq.
where h water depth, u, v average velocity,
tbshear stress, rwater density, H water
surface elevation (zbh), zbbed elevation, n
eddy viscosity, ttime, and x, y spatial
coordinate in Cartesian coordinate system.
8Cartesian coordinate system
Bed shear stress
Eddy viscosity
Shear velocity
where Cfbed friction coefficient, kKarmans
constant, ushear velocity
9Cartesian coordinate system
Bedload eq.
KavacsParker eq.
Hasegawa eq.
where ?non-dimensional shear stress,
?ccritical shear stress,?ccritical
non-dimension shear stress, ?bbed slope,
?ssediment density, s(?s/?-1), NEngelunds
constant, and rradius of curvature.
10Cartesian coordinate system
Sediment transport eq.
where zbbed elevation, lporosity of bed
material.
11Moving boundary-fitted system
Transformed rule
where u?, v?average velocity components in the
of ?, ? direction, ?time, and JJacobian of
coordinate transformed.
12Moving boundary-fitted system
Continuity eq.
Momentum eq.
13Moving boundary-fitted system
Sediment transport eq.
where q?, q?sediment transport rate components
in the ?, ? direction, respectively.
14Bank erosion mechanisms
Fig. (a) bank erosion and migration, (b) bed
aggradation and bank deposition.
15Bank deformation
Fig. (c) bank deformation and renewal of the
computational grid.
16CIP Method
Snow Festival, 2004
17CIP method (Yabe et al., 1990)
CCubic, IInterpolated, PPsuedoparticle
Advection phase
Diffusion phase
18Results
Snow Festival, 2004
19JangShimizu, 2003
Conditions L 12.0 m, b 0.80 m, q 4.50 l/s,
i 1.0, q 40o d 1.25 mm
Experiment
20JangShimizu, 2003
Experiment Results
21JangShimizu, 2003
Conditions L 12.0 m, b 0.80 m, q 4.50 l/s,
i 1.0 nx 83, ny 26, Dx 0.1463 m, Dy
0.0038 m, Dt 0.005 s, d 1.25 mm
L 7.0 m
Initial grid
22Bed contour and bank deformation
23Flow vector and bank deformation
24Run3- Nagata et al., 2000
Conditions L 10.0 m, B 0.30 m, q 1.98 l/s,
i 1.0 d 1.42 mm
Experiment
25Run3- Nagata et al., 2000
Conditions L 10.0 m, B 0.30 m, q 1.98 l/s,
i 1.0 nx 83, ny 26, Dx 0.128 m, Dy
0.0054 m, Dt 0.005 s, d 1.42 mm
L 10.0 m
Initial grid
26Run2- Morita et al., 2005
Conditions L 6.30 m, B 0.80 m, q 8.25 l/s,
i 1/2000 d 0.88 mm
erosion
erosion
deposition
FLOW
Experiment
27Run2- Morita et al., 2005
Conditions L 6.30 m, B 0.80 m, q 8.25 l/s,
i 1/2000 nx 50, ny 20, Dx 0.126 m, Dy
0.04 m, Dt 0.002 s,
Bed elevation
Streamline
Velocity vector
Initial condition
28Run2- Morita et al., 2005
Bed elevation
Streamline
Velocity vector
t 120 min.
29Application 1
Conditions L 80.0 m, B 10.0 m, q 50 m3/s, i
1/2000, d 1.45 mm
Bed elevation
Streamline
Velocity vector
t 0 min.
Equilibrium
????????????????????????????? 2.0 ???? x ??? 0.3
???? ?????????????????? ??? 20.0 ????
30Application 2
Conditions L 80.0 m, B 10.0 m, q 50 m3/s, i
1/2000, d 1.45 mm
t 0 min.
Equilibrium
????????????????????????????? 2.0 ???? x ??? 0.3
???? ??????????????????????? ??? 20.0 ????
31New Conceptual Design of Spur Dike
Snow Festival, 2004
32Spur Dike
33Natural Diversities River Methods
After 2 years
Before
Before
After
Hokkaido, Japan
34Natural Diversities River Methods
Before
Before
After
After
Hokkaido, Japan
35Spur Dike Design
Straight Channel Section Length 0.10B Height 0.
2-0.3HWmax Distance 2-4Lsd, 10-30Hsd Side
Slope 1/20-1/100 Bend Channel Section Length 0.1
0B Height 0.5-1.0HWaver Distance gt2Lsd Side
Slope 1/20-1/100
B
Lsd
B Channel width Lsd Length of spur
dike HWaver Average water depth HWmax Maximum
water depth Hsd Height of spur dike
36THE END