Title: Aucun titre de diapositive
1Applications of Atom Interferometry to
Fundamental Physics on Earth and in Space
Christian J. Bordé
Atomic clocks
- Measurement of the fine structure constant
Gyros, accelerometers, gravimeters
- Test of the equivalence principle
General Relativity
- Lense-Thirring effect
ERICE 2001
2ERICE 2001
3E(p)
ENERGY
atom slopev
rest mass
photon slopec
p
MOMENTUM
ERICE 2001
4E(p)
p//
ERICE 2001
5E(p)
p?
ERICE 2001
6FIRST-ORDER EXCITED STATE AMPLITUDE
7REINTERPRETATION OF RAMSEY FRINGES
8RAMSEY FRINGES WITH TWO SPATIALLY SEPARATED
FIELD ZONES
a
b
b
a
a
b
ERICE 2001
9FOUNTAIN CLOCK
ERICE 2001
10Atom Interferometer
Laser beams
Atom beam
ERICE 2001
11Laser Cooling of Atoms
working horse of laser cooling
Magneto-optical trap (MOT)
MOT
BEC 1014 cm-3 10 nK 10-100 mm
density n 1011 cm-3 temperature T
100 mK size Dx 1mm
- reduction of systematic errors
- higher interaction times Tdrift ? µs ... ms
towards 1-10 s - new atom sources such as
- atom lasers (Bose-Einstein condensates)
12Optical clocks with cold atoms
use the working horse of laser cooling
Magneto-optical trap (MOT)
- In the future new atom sources such as atom lasers
ERICE 2001
13Time-domain Ramsey-Bordé interferences with cold
Ca atoms
ERICE 2001
14Femtosecond lasers as frequency comb generators
ERICE 2001
15Experimental Setup
Method 4 Count Ca beat 4 Count nceo 4
phase-lock frep
J. Stenger, T. Binnewies, G. Wilpers, F. Riehle,
H.R. Telle, J.K. Ranka, R.S. Windeler, A.J.
Stentz, private communication
FVC
Frequency Comb Generator
TiSa
Counter
PLL
PZT
PD
SESAM
fCa-Servo Counting
PZTs
MS Fiber
LBO
OC
?CEO-Counting
frep-Servo
100 MHz ( H - maser / Cs-clock controlled)
PD
PM
PLL
-
455 986 240 MHz from Ca-Standard (via fiber)
Counter
ERICE 2001
16a
17Interféromètres atomiques
Jets atomiques
Faisceaux laser
18RECOIL DOUBLING
E(p)
E(p)
p
p
ERICE 2001
19(No Transcript)
20(No Transcript)
21Measurements of a with Atom Interferometers
frequency shift due to the photon recoil in a
Ramsey-Bordé interferometer
determined by HYPER measured in ground-based
experiments, e.g. ion traps
accuracy 2?10-10 2?10-10 5?10-9
HYPER
21
22HYPER
- HYPER-precision
- cold atom interferometry
- in space
23The HYPER Core Team
BNM-LPTF ( A. Clairon, P. Wolf, Paris) ENS-LKB
(C. Salomon, Paris) IAMP (K. Danzmann,
Hanover) IQO (W. Ertmer E.M. Rasel, C.Jentsch,
Hanover) IOTA (P. Bouyer, Paris) LHA (N. Dimarcq,
A. Landragin , Paris) LGCR (P. Tourrenc,
Paris) LPL (C. Bordé, Paris Hanover) PTB (J.
Helmcke, Braunschweig) RAL (M.K. Sandford, R.
Bingham, M. Caldwell, B.Kent, Chilton,
Didcot) Queen Mary and Westfield College (I.
Percival, London) University Trento (S. Vitale,
Trento) University Ulm (W. Schleich,
Ulm) University Konstanz (C.Lämmerzahl, Konstanz)
24(No Transcript)
25(No Transcript)
26(No Transcript)
27(No Transcript)
28GRAVITOELECTRIC AND GRAVITOMAGNETIC
INTERACTIONS THE USUAL PICTURE
Two entries 1 - Field equations - R.L. Forward,
General Relativity for the Experimentalist
(1961) - Braginsky, Caves Thorne, Laboratory
experiments to test relativistic gravity (1977)
2 - Motion equation and Schroedinger equation
- DeWitt, Superconductors and gravitational drag
(1966) - G. Papini, Particle wave functions in
weak gravitational fields (1967)
29Atom Interferometers as Gravito-Inertial
Sensors
Analogy between gravitation and electromagnetism
Metric tensor
Newtonian potential
T
T
T
Gravitoelectric
field
ERICE 2001
30Atom Interferometers as Gravito-Inertial
Sensors I - Gravitoelectric field case
with light Einstein red shift with neutrons COW
experiment (1975) with atoms Kasevich and Chu
(1991)
T
T
T
Gravitational phase shift
Ratio of gravitoelectric flux to quantum of flux
Mass independent ? (time)2
Phase shift
Circulation of potential
ERICE 2001
31(No Transcript)
32Atom Interferometric Gravimeter
- Performances
- Resolution 3x10-9 g after 1 minute
- Absolute accuracy ?g/glt3x10-9
- From A. Peters, K.Y. Chung and S. Chu
32
ERICE 2001
33(No Transcript)
34(No Transcript)
35Gradiometer with cold atomic clouds
- Yale university
- Sensitivity 3.10-8 s-2/?Hz 30 E/?Hz
- Potential on earth 1E/?Hz
ERICE 2001
35
36(No Transcript)
37Atom Interferometers as Gravito-Inertial
Sensors Analogy between gravitation and
electromagnetism
Metric tensor
Pure inertial rotation
Gravitomagnetic field
ERICE 2001
38Atom Interferometers as Gravito-Inertial
Sensors II - Gravitomagnetic field case
with light Sagnac (1913) with neutrons Werner
et al.(1979) with atoms Riehle et al. (1991)
Sagnac phase shift
Ratio of gravitomagnetic flux to quantum of flux
Phase shift
Circulation of potential
ERICE 2001
39(No Transcript)
40(No Transcript)
41(No Transcript)
42(No Transcript)
43(No Transcript)
44Atomic Beam Gyroscope
Interference fringes
Sensitivity 6.10-10 rad.s-1/?Hz (Yale
University)
ERICE 2001
44
45ERICE 2001
45
46HYPER-precision cold atom interferometry
in space
47Atomic Sagnac Unit
Interferometer length 60 cm
Atom velocity 20 cm/s
Drift time 3 s
Area 54 cm2
109 atoms/shot
Sensitivity 2x10-12 rad/s
HYPER
47
125th Anniversary of the Metre Convention
48LENSE-THIRRING FIELD
Gravitomagnetic field generated by a massive
rotating body
Field lines to magnetic dipole
Gravitomagnetic field lines
49HYPER Lense-Thirring measurement
Signal vs time
Hyper carries two atomic Sagnac interferometers,
each of them is sensitive to rotations around one
particular axis. The two units will measure the
vector components of the gravitomagnetic rotation
along the two axes perpendicular to the telescope
pointing to a guide star.
HYPER
49
125th Anniversary of the Metre Convention
50The HYPER Satellite
ASU1
Cold Atom Source
Star Tracker Pointing
ASU2
ASU Reference (connected to the Raman Lasers
to the Star Tracker)
HYPER
50
ONERA 2001
51Conclusion
Atomic Sagnac Unit 2
Lense-Thirring Measurement
Resolution 3x10-12rad/s /?Hz
Star Tracker
Atomic Sagnac Unit 1
- Expected Overall Performance 3x10-16rad/s over
one year of integration i.e. a S/N100 at twice
the orbital frequency
Raman Lasers Module
Laser Cooling Module
52The HYPER Mission Goals (1)
measurement of the fine-structure constant
improved by one or even two orders of magnitude
to test QED
a
latitudinal mapping of the general relativistic
gravito-magnetic effect of the
Earth (Lense-Thirring-effect)
HYPER
52
53The HYPER Mission Goals (2)
investigation of decoherence of matter-waves
for the first time cold-atom gyroscopes control
a spacecraft
HYPER
53
54HYPER Summary
- HYPER will investigate
- precision measurement of a (h/mat)
- gravito-inertial effects
(Lense-Thirring-Effect) - decoherence (effects
of quantum gravity) - navigation by atom interferometric sensors
55ABCDx PROPAGATOR
56(No Transcript)
57GRAVITOELECTRIC AND GRAVITOMAGNETIC
INTERACTIONS THE USUAL PICTURE
Two entries 1 - Field equations - R.L. Forward,
General Relativity for the Experimentalist
(1961) - Braginsky, Caves Thorne, Laboratory
experiments to test relativistic gravity (1977)
2 - Motion equation and Schroedinger equation
- DeWitt, Superconductors and gravitational drag
(1966) - G. Papini, Particle wave functions in
weak gravitational fields (1967)
58A new analogy between electromagnetic and
gravitational interactions
59RELATIVISTIC PHASE SHIFTS