Chapter 6 Supplement - PowerPoint PPT Presentation

About This Presentation
Title:

Chapter 6 Supplement

Description:

Chapter 6 Supplement Linear Programming – PowerPoint PPT presentation

Number of Views:104
Avg rating:3.0/5.0
Slides: 32
Provided by: Ralph204
Category:

less

Transcript and Presenter's Notes

Title: Chapter 6 Supplement


1
Chapter 6 Supplement
  • Linear Programming

2
Linear Programming
  • Linear Programming (LP) deals with the problems
    of allocating limited resources among competing
    activities in the best possible way (optimal)
  • A linear program consist of a linear objective
    function and a set of linear constraints

3
Linear Programming Model
  • Objective the goal of an LP model is
    maximization or minimization
  • Decision variables amounts of either inputs or
    outputs
  • Constraints limitations that restrict the
    available alternatives
  • Parameters numerical values

4
Linear Programming Assumptions
  • Linearity the impact of decision variables is
    linear in constraints and objective function
  • Divisibility noninteger values of decision
    variables are acceptable
  • Certainty values of parameters are known and
    constant
  • Nonnegativity negative values of decision
    variables are unacceptable

5
Linear Programming Application Procedure
  • Parameter Estimation
  • Problem Formulation
  • Optimal Solution
  • Graphical Method
  • Simplex Method
  • Computer Solution
  • Other Methods
  • Sensitivity Analysis

6
Linear Programming Application Areas
  • Production
  • Inventory
  • Financial
  • Marketing
  • Distribution
  • Sports
  • Agriculture

7
Linear Programming Some Definitions
  • Solution A solution is a set of values of the
    decision variables
  • Feasible Solution A feasible solution is a
    solution for which all the constraints are
    satisfied
  • Optimal Solution An optimal solution is a
    feasible solution which optimizes the objective
    function

8
Linear Programming Types of Solutions
  • Single Optimal Solution
  • Multiple Optimal Solutions
  • No Optimal Solution

9
Graphical Linear Programming
  • Set up objective function and constraints in
    mathematical format
  • Plot the constraints
  • Identify the feasible solution space
  • Plot the objective function
  • Determine the optimum solution

10
Graphical Linear Programming
  • Maximize Z 4X1 5X2
  • Subject to
  • X1 3X2 lt 12 (constraint 1)
  • 4X1 3X2 lt 24 (constraint 2)
  • X1 gt 0
  • X2 gt 0

11
Linear Programming Example
Plot Constraint 1 X1 3X2 12
12
Linear Programming Example
Add Constraint 2 4X1 3X2 24
Constraint 1 X1 3X2 12
Solution space
13
Linear Programming Example
X2
Z 60
Z 40
Z 20
X1
14
LP Formulation and Computer Solution Problem 1
15
Linear Programming Problem 1 Formulation
  • Let Xi be the number of units of product type i
    to be produced per week, i 1, 2, 3
  • Maximize Z 30X1 12X2 15X3
  • Subject to
  • 9X1 3X2 5X3 lt 500 (Milling)
  • 5X1 4X2 lt 350 (Lathe)
  • 3X1 2X3 lt 150 (Drill)
  • X3 lt 20 (Sales Potential)
  • X1 gt 0, X2 gt 0, X3 gt 0

16
Slack and Surplus
  • Binding constraint a constraint that forms the
    optimal corner point of the feasible solution
    space
  • Slack when the optimal values of decision
    variables are substituted into a less than or
    equal to constraint and the resulting value is
    less than the right side value
  • Surplus when the optimal values of decision
    variables are substituted into a greater than or
    equal to constraint and the resulting value
    exceeds the right side value

17
Linear Programming Problem 1 Solution Using
LINGO Software
  • Objective value 1742.857
  • Variable Value Reduced Cost
  • X1 26.19048 0.0000000
  • X2 54.76190 0.0000000
  • X3 20.00000 0.0000000
  • Row Slack or Surplus Dual Price
  • PROFIT 1742.857 1.000000
  • MILLING 0.0000000 2.857143
  • LATHE 0.0000000 0.8571429
  • DRILL 31.42857 0.0000000
  • SALESPOT 0.0000000 0.7142857

18
Sensitivity Analysis
  • Range of optimality the range of values for
    which the solution quantities of the decision
    variables remains the same
  • Range of feasibility the range of values for the
    fight-hand side of a constraint over which the
    shadow price (dual price) remains the same
  • Shadow prices negative values indicating how
    much a one-unit decrease in the original amount
    of a constraint would decrease the final value of
    the objective function

19
Linear Programming Problem 1 Solution Using
LINGO Software
  • Ranges in which the basis is unchanged
  • Objective Coefficient Ranges
  • Current Allowable
    Allowable
  • Variable Coefficient Increase
    Decrease
  • X1 30.00000 0.7500000
    15.00000
  • X2 12.00000 12.00000
    0.6000000
  • X3 15.000 INFINITY
    0.7142857
  • Righthand Side Ranges
  • Row Current Allowable
    Allowable
  • RHS Increase
    Decrease
  • MILLING 500.0000 55.00000 137.5000
  • LATHE 350.0000 183.3333
    73.33334
  • DRILL 150.0000 INFINITY
    31.42857
  • SALESPOT 20.00000 27.50000 20.00000

20
Linear Programming Problem 1 Solution Using
EXCEL (a)
21
Linear Programming Problem 1 Solution Using
EXCEL Software (b)
22
Linear Programming Problem 1 Solution Using
EXCEL Software (c)
23
Linear Programming Problem 1 Solution Using
EXCEL Software (d)
24
LP Formulation And Computer Solution Problem 2
25
Linear Programming Problem 2 Formulation
  • Let X1 X2 X3 be the kilograms of corn, tankage,
    and alfalfa, respectively.
  • Minimize Z 21X1 18X2 15X3
  • Subject to
  • 90X1 20X2 40X3 gt 200 (Carbo)
  • 30X1 80X2 60X3 gt 180 (Protein)
  • 10X1 20X2 60X3 gt 150 (Vitamin)
  • X1 gt 0, X2 gt 0, X3 gt 0

26
Linear Programming Problem 2 Solution Using
LINGO Software
  • Objective value 60.42857
  • Variable Value Reduced Cost
  • X1 1.142857 0.0000000
  • X2 0.0000000 4.428571
  • X3 2.428571 0.0000000
  • Row Slack or Surplus Dual Price
  • COST 60.42857 1.000000
  • CARBOHY 0.0000000 -0.1928571
  • PROTEIN 0.0000000 -0.1214286
  • VITAMIN 7.142857 0.0000000

27
Linear Programming Problem 2 Solution Using
LINGO Software
  • Ranges in which the basis is unchanged
  • Objective Coefficient Ranges
  • Current Allowable
    Allowable
  • Variable Coefficient Increase
    Decrease
  • X1 21.00000 12.75000
    9.299998
  • X2 18.00000 INFINITY
    4.428571
  • X3 15.00000 2.818181
    5.666667
  • Righthand Side Ranges
  • Row Current Allowable
    Allowable
  • RHS Increase
    Decrease
  • CARBOHY 200.0000 25.00000 80.00000
  • PROTEIN 180.0000 120.0000
    6.000000
  • VITAMIN 150.0000 7.142857
    INFINITY

28
Linear Programming Problem 2 Solution Using
EXCEL Software (a)
29
Linear Programming Problem 2 Solution Using
EXCEL Software (b)
30
Linear Programming Problem 2 Solution Using
EXCEL Software (c)
31
Linear Programming Problem 2 Solution Using
EXCEL Software (d)
Write a Comment
User Comments (0)
About PowerShow.com