IEEE Computer 28(9) - PowerPoint PPT Presentation

1 / 37
About This Presentation
Title:

IEEE Computer 28(9)

Description:

IEEE Computer 28(9) IEEE Trans. On PAMI 18(8) Pattern Recognition 30(4) Image and Vision Computing 17(7) Photobook, MIT face ... – PowerPoint PPT presentation

Number of Views:54
Avg rating:3.0/5.0
Slides: 38
Provided by: hanqi2
Category:

less

Transcript and Presenter's Notes

Title: IEEE Computer 28(9)


1
(No Transcript)
2
????
  • IEEE Computer 28(9)
  • IEEE Trans. On PAMI 18(8)
  • Pattern Recognition 30(4)
  • Image and Vision Computing 17(7)

3
???????
  • Photobook, MIT
  • face, texture and shape database
  • WebSeek, Columbia U
  • WWW image search engine
  • include more than 650,000 images
  • ImageRover, Boston U
  • WWW image search engine
  • use 32 robots to collect one million images
    monthly
  • VideoBook, HKUST
  • video retrieval system
  • QBIC, IBM
  • commercial system (trademark)
  • MARS, Illinois
  • image retrieval with relevance feedback mechanism
  • VideoClip, Columbia U
  • video parsing and editing
  • Princeton University
  • high-level video representation
  • NeTra, UCSB
  • object-based video representation

4
????
  • ????
  • ????????
  • ??????????
  • ????
  • ????
  • ????
  • ?????

5
?????????
  • ???????????????
  • ?????????
  • ?????????
  • ????

????????
6
?????????
  • ????
  • GRB?HSI?YUV
  • ??????????
  • ???????
  • ??????

7
???????????
8
?????????
9
?????????
  • HSI????

10
?????????
  • ??HSI???????
  • ?????H-S????????,?????????,????????????
  • ????,?????????????????

11
??????
  • 1 ??H-S-I??????
  • 2 ?????????????(????????,?????????)?
  • 3 ????????????????????H-S-I??????
  • 4 ?????????????(??)???
  • 5 ???????????????????
  • 6 ????5?????????3?????,??????????????????????????
    ????????,???????????????
  • 7 ?????,???????????????????????????

12
????
13
????
?????
14
?????????
  • ???????????????,??????
  • ???????????????,Gabor????
  • ?????????Markov?????,Wold???
  • ???????????

15
?????????
  • ???????????????????????
  • ?????????????(???????),?????????????
  • ????????(????????)??????????????

16
?????????????
  • Haralick?????????????????
  • ??????????????????????
  • ?????????????????????
  • Amadasun???????????????????
  • ???????????????5???
  • Tamura????6??????
  • ???????????????????????
  • ??????????????????

17
????????????????
18
????????????????
19
??Gabor?????????
????????2?Gabor?????
,??
???m?n????Gabor????
??????
20
?????????
  • ????(boundary-based)?????
  • ????????????(Fourier Descriptor),?????????
    ??,????????????
  • ????(region-based)?????
  • ?????????(Moment Invariants)??????????????
    ????????????????????,??????????,?????????????????

21
????????
  • ???????????????????????
  • ?????????,??,???
  • ??????,Fourier????????????????
  • ????????
  • ?????????

22
???????
  • ?????????
  • ??????????????????????????????????
  • ???????
  • ??Fourier????????????????
  • ?????????????
  • ??Hough??(GHT)
  • ???????????????
  • ????(???????)
  • ?????????????
  • ????
  • ?????????Markov??

23
???????????
  • ?????????
  • ??????????????????
  • ?????
  • ????????????
  • ?????????????
  • ????????
  • ??????,??
  • ??????

24
Shape Retrieval and Matching by Schwarz Integral
Yang MA Pattern Recognition 1999
25
A close-form solution for shape matching and
similarity measurement
A multi-scale matching
26
1. Multi-scale representation by Schwarz
integral
Shape contour is presented by a 1D periodic
function
27
  • We define a complex function defined on
    a
  • disc of radius 1.

Where is the shape function
28
It can be proved that
is a smoothed function of
Where r is the scale.
is the smoothed function of
where r is the scale.
The Schwarz Integral can be considered as the
multiscale representation of the shape function.
29
2. Signal matching and similarity measurement
Matching model Let
be two signals. is a
one-to-one smooth function such that
is the matching function of two signals
30
  • If were a bijective function, then
  • But in fact, is a multi-values
    function

  • , may not be in the same
    scale, so matching
  • two functions in different scales is not
    reasonable.
  • Instead of matching , we propose
    to match
  • their Schwarz representations ,
    by

31
Algorithm
  • (1) Extract tangent function of shape as feature
    function
  • (2) Expand the feature function
  • into Fourier series

(3) We obtain the Schwarz representation of the
shape
32
3. Compute the inverse functions of

And expand them into polynomials.
33
  • Image Retrieval from model image
  • (1) Extract the one-dimensional feature of model
    image,
  • expand the feature function in to Fourier
    series and obtain the Schwarz integral
  • (2)Compute the matching function by
  • (3)Compute similarity measure
  • (4)Output the most k similar image as result.

The matching method can be used both to find
the correspondent points and to measure the
similarity between two shapes
34
(No Transcript)
35
Summary
  • Shape representation and Matching
  • Global region or local feature based
  • Optimization framework
  • Research work
  • image segmentation
  • 3D object and occlusion
  • fast algorithms for large data base
  • robustness

36
??????
  • 1 ???????
  • 2 ??G??????Gxy?
  • 3 P(x)y
  • 4 ??G??x?y?,????????????
  • 5 ??G??,????????,?????,??2?

37
??????
  • ???????????????,??????
  • ???????????????,Gabor????
  • ?????????Markov?????,Wold???
  • ???????????
Write a Comment
User Comments (0)
About PowerShow.com