Title: Chapter 12 Field-Effect Transistors ?????
1Chapter 12Field-Effect Transistors ?????
2Field-Effect Transistors (FETs)
- FET (?????) ?????????????,???????????????,????????
? ? - Metal-Oxide-Semiconductor Field-Effect Transistor
(MOSFET,????????)???NMOS (????????)?PMOS(????????)
? - MOSFET ??source (??)?gate (??)?drain(??)?body(??)
?
312.1 NMOS AND PMOS TRANSISTORS
NMOS Transistor (n-p-n)
???????,??? ??????? ?????????? ????????
(gate ??)
(drain ??)
(source ??)
(O, ?)
(M, ?)
??
(S, ?)
(Body ??)
4NMOS (n-channel MOS)
- NMOS ? source (??)?drain(??)?n-type ???, body(??)
?p-type ???, gate (??)??? ?
n-p-n
5(No Transcript)
6NMOS ??? (Operation)
- NMOS ????????(region)
- Cutoff Region (???)
- Triode Region (???) or Linear Region (???)
- Saturation Region (???)
and
and
7Operation in the Cutoff Region
- ???(gate)???(source)???vGS 0,??pn??(body-source)
?(body-drain)?????????????,??MOSFET???(cutoff)? - ???(gate)???(source)???vGS ?????gtVto (threshold
voltage,????)?,?NMOS???????
8Operation in the Triode Region
and
- ???(gate)????,??????????????????, ????????????
9Operation in the Triode Region
and
- ???(gate)???(source)???vGS ?????gtVto (threshold
voltage,????),??drain?source??????vDS,???n-type??(
channel),?????????????????,??????(drain
current)iD,????drain??source,????????????? - ?vDS???, iD?vDS???, ??vGS - Vto????
- ????????,????? iG 0?
10Operation in the Triode Region
- In the triode region, the NMOS behaves as a
resistor connected between drain and source, but
the resistance decreases as vGS increases.
0, if vDS0
Device parameter
11Operation in the Saturation Region
and
- ?drain?source????vDS vGS - Vto(or vGD Vto)
?n-type???drain?????0 ,vDS???, iD????, ??????
12Operation in the Saturation Region
13Boundary between Triode and Saturation Regions
At boundary, ??n-type???drain??????0
??I-V equation in saturation region
14Boundary between Triode and Saturation Regions
? ??I-V
equation in triode region
???????
15boundary
16Example 12.1
A NMOS transistor W160um, L2um, KP50uA/V2, and
Vto2 V. Plot the drain characteristic curves to
scale for vGS0, 1,2, 3, 4, and 5 V.
1. ? K
2. ? boundary
173. ? saturation currents
184. Plot characteristics in the triode region
(parabola ???).
19PMOS
- PMOS ? source ?drain?p-type ???, body?n-type ???,
gate (??)??? ? - ?????????
20(No Transcript)
21MOSFET Summary
2212.2 LOAD-LINE ANALYSIS OF A SIMPLE NMOS
AMPLIFIER
2312.2 LOAD-LINE ANALYSIS OF A SIMPLE NMOS
AMPLIFIER
- VGG (dc source) ?NMOS ????(bias) ,?????, ?ac
input ???????????,??vGS, iD???????
24- iD?????,??RD??????????, ??vDS?? ac output?
KVL
Load-line equation
Load-line ???
25- Quiescent operation point (Q point) is at vin0.
26(No Transcript)
271 V
VGSQ4
5 V
VDQ11
7 V
Distortion (??)
28Distortion
Distortion is due to that the characteristic
curves for the FET are not uniformly spaced. If a
much smaller input amplitude was applied we would
have amplification without appreciable distortion.
29Amplifier Analysis
12.3 Bias Circuits
Amplifier analysis has two steps 1. Determine
the Q point. 2. Use a small-signal equivalent
circuit to determine impedances and gains.
30The Fixed- Plus Self-Bias Circuit
31The Fixed- Plus Self-Bias Circuit
1. Thévenin equivalent
322. KVL
3. Usually, transistor operates in saturation
region
334. Load Line Analysis iD vs. vGS
345. Determine vDS
35Example 12.2
Analyze the following circuit. The transistor
KP50uA/V2, Vto2 V, L10um, W400um
1. Determine K
2. Thévenin equivalent
363. Determine VGSQ
374. IDQ VDSQ
38 12.4 SMALL-SIGNAL EQUIVALENT CIRCUITS
Small signal (ac)
Small signal (ac)
To determine vgs(t) vs. id(t)
39 SMALL-SIGNAL EQUIVALENT CIRCUITS
At Q point
0