Title: Aucun%20titre%20de%20diapositive
1 Guessing Hierarchies and Symbolsfor Word
Meanings throughHyperonyms and Conceptual Vectors
Mathieu Lafourcade LIRMM - France http//www.lir
mm.fr/lafourcade
2Overwiew Objectives
- lexical semantic representations
- conceptual vector model (cvm)
- autonomous learning by the system
- from a given semantic space (ontology)
- Constructing texonomies
- Hierarchical - findind hyperonyms
- Multiple inheritance - views
- ambiguity as noise
- towards self contained WSD annotations
- I made a deposit at the bank
- ? I made a deposit at the bankltgmoneygt
3Conceptual vectorsvector space
- An idea
- Concept combination a vector
- Idea space
- vector space
- A concept
- an idea a vector V
- with augmentation V neighboorhood
- Meaning space
- vector space v
?
42D view of meaning space
product
cat
5Conceptual vectors Thesaurus
- H thesaurus hierarchy K concepts
- Thesaurus Larousse 873 concepts
- V(Ci) lta1, , ai, , a873gt
- aj 1/ (2 Dum(H, i, j))
1/4
1
1/4
1/4
1/16
1/16
1/64
1/64
2
6
4
6Conceptual vectors Concept c4peace
peace
conflict relations
hierarchical relations
society
The world, manhood
7Conceptual vectors Term peace
c4peace
8 exchange
profit
finance
9Angular distance
- DA(x, y) angle (x, y)
- 0 ? DA(x, y) ? ?
- if 0 then x y colinear same idea
- if ?/2 then nothing in common
- if ? then DA(x, -x) with -x anti-idea of x
x
x
?
y
10Angular distance
- DA(x, y) acos(sim(x,y))
- DA(x, y) acos(x.y/xy))
- DA(x, x) 0
- DA(x, y) DA(y, x)
- DA(x, y) DA(y, z) ? DA(x, z)
- DA(0, 0) 0 and DA(x, 0) ?/2 by definition
- DA(?x, ?y) DA(x, y) with ?? ? 0
- DA(?x, ?y) ? - DA(x, y) with ?? lt 0
- DA(xx, xy) DA(x, xy) ? DA(x, y)
11Thematic distance
- Examples
- DA(tit, tit) 0
- DA(tit, passerine) 0.4
- DA(tit, bird) 0.7
- DA(tit, train) 1.14
- DA(tit, insect) 0.62
tit insectivorous passerine bird
12Some vector operations
- Addition ? Z X ? Y
- zi xi yi vector Z is normalized
- Term to term mult ? Z X ? Y
- zi (xi yi)1/2
- vector Z is not normalized
- Weak contextualization ? Z X ? (X ? Y)
?(X,Y) - Z is X augmented by its mutual information with
Y
132D view of weak contextualization
X
Y
14Autonomous learning 1/2
- set of known words K, set of unknow words U
- revise a word w of K OR (try to) learn a word w
of U - From the web for w ask for a def D
- specific sites dicts, synonyms list, etc. ? def
analysis - general sites google, etc. ? corpus analysis
- for each word wd of D
- if not in K then add wd to U AND add VO to V
- otherwise get the vector of wd AND add V(wd) to
V - compute the new vector of w from def(D) and V
98870 words for 400000 senses (vectors) learned
in 3 years
French
ever looping process
15Autonomous learning 2/2
V
TXT
V
PH
V
N, GOV
V
ADJ,
V
insectivorous passerine bird
16(No Transcript)
17Hyperonyms identifications
- Extraction
- Try all terms
- too costly and unproductive
- Extract potential candidates
- From definitions, cooccurence lists etc.
- Ex Cand(emerald) precious stone, stone, beryl,
gem, - Evaluation of cand (m) to meaning (m)
- Contextualize ?(c,m) c ? (c ? m)
- Retain c such as ?(c,m) is the closest to m
- Loop extracting hyper helps identifying meanings
18Pierre précieuse
Gemme/pierre précieuse
Gemme/bourgeon
Gemme/résine
v
v
v
béryl
closest vector
Émeraude/pierre précieuse
Émeraude/béryl
Émeraude/gemme
v
v
v
Pierre précieuse
Gemme/pierre précieuse
Gemme/bourgeon
Gemme/résine
v
v
v
béryl
Émeraude/pierre précieuse
Émeraude/béryl
Émeraude/gemme
v
v
v
19Pierre précieuse
0.9
Gemme/pierre précieuse
Gemme/bourgeon
Gemme/résine
0.81
béryl
0.7
0.85
Émeraude/pierre précieuse
Émeraude/béryl
Émeraude/vert
Émeraude/couleur
Pierre précieuse
Couleur/matière
Couleur/sensation
0.9
Gemme/pierre précieuse
Vert/couleur des signaux
Vert/couleur
0.81
béryl
0.85
Émeraude/vert
Émeraude/béryl
20Moyen de transport
artefact
hypo
aliment
animal
véhicule/Moyen de transport
véhicule/vecteur
nourriture
wagon
automobile
Cheval/moyen de transport
Viande/nourriture
Voiture/wagon
mammifère
hypo
Voiture/automobile
Cheval/viande
Cheval/mammifère
Cheval/unité de puissance
21Last words
- Switching of representation
- From subsymbolic to symbolic
- and vice-versa ? readabily of symbols of
words - global and local test functions
- for vector quality assessment
- decision taking about number of meanings or
views - detectors when combined to lexical functions
(antonymy, etc.) - the basis for
- self adjustement toward a vector space of
constant density - wsd as a reduction of noise (in context or out of
context) - unification of ontologies
- self emergent structuration of terminology