Title: Sulfur, manganese
1Sulfur, manganese in the Galaxy
Mishenina T.V., Gorbaneva T.I., Paramonova O.P.,
Basak N.Yu., Kovtyukh V.V., Korotin S.A.,
Chekhonadskih F. Odessa
Astronomical Observatory .
- Preliminary plan
- 2014-2016
Workshop "Heavy elements
nucleosynthesis and galactic chemical
evolution".
September 8
September 11, 2013 Moscow, Russia
2Aims (sulfur)
- Abundance of sulfur shows a larger scatter than
other alpha-elements (Luck et al., 2011
Lemasle et al. 2013). This is certainly due to
the fact that sulfer abundances are based on
typically 2-4 lines in IR region of spectra,
which are subject to significant NLTE departures.
It would be very important to reduce the scatter
and to ascertain the sulfur abundances in
Cepheids and dwarfs in the Galactic disc. - This would enable us a sulfur abundance gradient
in the disk using Cepheids. - The distribution of sulfur in the disc
dwarfs allows to trace the evolution of sulfur
(to estimate the different sources of S
production) at all ages of the disc stars.
3Aims (manganese)
- Manganese is an element of the iron peak
- The behavior of Mn is inverse to that of
alpha-elements (Wallerstein, 1962, Gratton 1989)
and differs from that of iron group elements. - SN II and SN Ia in different proportion as the
main sources of Mn production. - The behavior of manganese in the thick and the
thin disc of the Galaxy allows us to consider
some sources of they production and to precise
its contribution in manganese enrichment.
4Preliminary results for Sulfur and Manganese
- The spectra of stars were obtained with S/N about
100-350 using the 1.93 m telescope at the
Observatoire de Haute-Provence (OHP, France),
equipped with the echelle-spectrograph s ELODIE
(Barrane et al., 1996? a resolving power is R
42 000) and SOPHIE (Perruchot et al., 2008), a
resolving power is R 75 000). - The spectral processing was carried out using
the processing codes (Katz et al., 1998
Galazutdinov, 1992). - The parameters of the investigated stars were
taken from our earlier studies ( e.g.Mishenina
et al. 2013).
5Sulfur abundance
- The abundances of sulfur were obtained for 27
dwarfs under the LTE approximations upon the
synthetic spectrum method, taking into account
the HFS and the oscillator strengths of lines by
Korotin (2009). - The Kurucz model of atmospheres (Kurucz, 1993)
and the new version of the STARSP code by
Tsymbal (1996) were used. We used for the sulfur
and iron abundance determination the lines in the
visual region (of 6743-6762 ÅÅ). - The NLTE corrections for those lines did not
exceed -0.1 dex (Korotin, 2009).
6The observed and synthetic spectra fitting for
star HD108954
7The model predictions by Timmes, WoosleyWeaver
(1995) and the data of other authors (our data
as asterisks, Clegg et al. 1981 as triangles,
Francois 1987, 1988 as squares and circles).
The production of all stable sulfur isotopes in
the massive-star models is sufficient to explain
the solar abundance (Timmes et al. 1995) ???
8Sulfur for Cepheids
- 250 Cepheids
- VLT (ESO) McDonald (USA)
- HFS NLTE approximation using a 65-level model
of the SI atom (Korotin S., 2009) - (Visual IR)
9Manganese
- The observations from ELODIE and SOPHIE (1.93m,
OHP, France) for 200 dwarfs of the thin and thick
disk stars - HFS from (Prochaska et al., 2000)
- LTE, the new version of the STARSP code by V.
Tsymbal - Maximum NLTE correction about 0.1 dex for solar
metallicity (Bergemann Gehren, 2007), the
program DETAIL (Butler Giddings 1985), the
model atom - 245 and 213 levels for Mn I and Mn
II, respectively - 0.2-0.5 dex for low metallicity (-1 -- -2 dex)
(Bergemann Gehren, 2008).
10The observed and synthetic spectra fitting
11Thin disk as magenta, thick disc as black
squares, Hercules stream - as green triangles
12 Comparison with the data of other authorsblack
circles (Reddy et al. 2006) triangles (Nissen
2011) open circles (Feltzing et al. 2007) and
asterisks (our data).
13Timmes et al. (1995)
- Inclusion of nucleosynthesis from Type Ia
supernovae improves the fit to the solar
abundance of Mn.???
14Trend of Mn/Fe vs. Fe/H
- Different assumptions are invoked to explain the
trends - 1)a Mn overproduction with respect to Fe in
supernovae of type Ia (Prochaska McWilliam
2000 Nissen et al. 2000 Sobeck et al. 2006) - 2) metallicity dependent yields from type II
supernovae (McWilliam et al. 2003) - New Mn nucleosynthesis results and new models
of the chemical evolution! - .
15Detailed analysis of four stars with different
metallicity
- Spectrograph SOPHIE (http//www.obs-hp.fr/www/gui
de/sophie/sophie-info.html - R75000, ?? 3872-6943 Å Å
- Now, we have redefined the parameters and focused
our attention on the lines of the elements
produced in the process of neutron captures - WIDTH9 by Kurucz R.
- LTE approximation, EWs
- FeI, FeII, YII, ZrI, ZrII, LaII, CeII, PrII,
NdII, SmII, GdII
16Parameters of studied stars
HD V Sp S/N Teff (K) log g ? (km s-1) Fe/H
6582 5.1 G5Vb Double or multiple star 321 5330 4.35 0.4 -0.86
19445 8.1 A4p Variable Star 102 5950 4.1 1.3 -1.99
84937 8.3 sdF5 High proper-motion Star 148 6200 3.8 1.6 -2.15
170153 3.6 F7V Double or multiple star 317 6160 4.0 0.9 -0.57
17Selection of lines
ElEMENT Number of lines Number of lines
ElEMENT min max
Fe I 475 846
Fe II 51 83
Y II 11 23
Zr I 0 23
Zr II 9 19
La II 7 25
Ce II 5 57
Pr II 4 22
Nd II 11 73
Sm II 5 46
Gd II 1 12
Parameters of line from VALD (Piskunov et
al. 1995 Kupka et al. 1999), for Ce II also
from Lawler et al. (2009). Lawler J. E. et al.
2009, Astrophys. J. Suppl., 182, 51.
18Element abundances
ElEMENT HD6582 HD6582 HD6582 HD6582 HD6582 HD19445 HD19445 HD19445 HD19445 HD19445 HD84937 HD84937 HD84937 HD84937 HD84937 HD170153 HD170153 HD170153 HD170153 HD170153
ElEMENT X/H ? N lg? X/Fe X/H ? N lg? X/Fe X/H ? N lg? X/Fe X/H ? N lg? X/Fe
Fe I -0.86 0.1 846 6.64 0 -1.99 0.11 539 5.51 0 -2.15 0.11 475 5.35 0 -0.57 0.1 802 6.93 0
Fe II -0.87 0.07 63 6.63 -0.01 -2 0.13 55 5.5 -0.01 -2.14 0.11 51 5.36 0.01 -0.58 0.11 83 6.92 -0.01
Y II -0.86 0.1 22 1.35 0 -2.07 0.1 11 0.14 -0.08 -2.2 0.1 12 0.01 -0.05 -0.66 0.11 23 1.55 -0.09
Zr I -0.75 0.06 23 1.83 0.11 -0.56 0.13 5 2.02 0.01
Zr II -0.71 0.05 19 1.87 0.15 -1.76 0.13 10 0.82 0.23 -1.93 0.1 9 0.65 0.22 -0.52 0.11 18 2.06 0.05
La II -0.76 0.07 22 0.34 0.1 -1.8 0.09 8 -0.7 0.19 -1.9 0.07 7 -0.8 0.25 -0.5 0.08 25 0.6 0.07
Ce II -0.83 0.09 57 0.75 0.03 -1.58 0.06 10 0 0.41 -1.79 0.03 5 -0.21 0.36 -0.5 0.1 52 1.08 0.07
Pr II -0.72 0.08 22 0 0.14 -1.15 0.11 9 -0.43 0.84 -1.51 0.02 4 -0.79 0.64 -0.55 0.09 18 0.17 0.02
Nd II -0.76 0.09 72 0.66 0.1 -1.64 0.12 15 -0.22 0.35 -1.76 0.07 11 -0.34 0.39 -0.52 0.11 73 0.9 0.05
Sm II -0.65 0.06 46 0.31 0.21 -1.28 0.11 11 -0.32 0.71 -1.45 0.05 5 -0.49 0.7 -0.45 0.08 41 0.51 0.12
Gd II -0.62 0.07 12 0.45 0.24 -1.31 0 1 lt-0.24 0.68 -1.53 0.08 3 lt-0.46 0.62 -0.47 0.08 9 0.6 0.1
19Behavior of the element abundances in the
atmospheres of the Sun and of investigated stars
20Plan (2014)
- Chekhonadskikh F., Korotin S.A, (Kovtyukh V.V.)
Galactic abundance gradients from Cepheids
NLTE abundance of Sulphur. - Mishenina T.V., (Pignatari M., Gorbaneva T.I.)
Determination of Mn abundances in the sample of
thin and thick disk stars for study of the
sources of Mn production and Mn Chemical
evolution. - Chekhonadskikh F., (Kovtyukh V.V.) Abundances of
double-mode Cepheids from high-resolution
echelle spectroscopy. - Korotin S.A. NLTE analysis of C, O, Na, Mg for
60 F supergiants . - Andrievsky S.M., Korotin S.A, (Kovtyukh V.V.)
Oxygen NLTE abundance distribution in the central
part of the Galactic disc. - Yushchenko V. The most detailed elemental
abundance pattern in RM 1-667-stars of SMC
Analysis of radioactive elements (Th). - Mishenina T.V., (Basak N.Yu.) The detailed
investigation of 10 stars as standard stars in
the region of metallicity Fe/H from -0.8 to -3
dex. -
21Plan (2015)
- Chekhonadskikh F., Korotin S.A, (Kovtyukh V.V.)
Galactic abundance gradients from Cepheids
NLTE analyze of alpha-elements. - Mishenina T.V., (Paramonova O.P.) Determination
of Sulfur abundances in the thin and thick disk
stars for study the sources of its production - Chekhonadskikh F., (Kovtyukh V.V.) FGK
Supergiants elemental abundances and their
implementation for the stellar and galactic
evolution. - Yushchenko V. Determination of the Th abundance
in HD204543 by synthesis method. - Mishenina T.V., Korotin S.A., (Kovtyukh V.V.)
Enrichment with alpha- and neutron capture
elements of open cluster stars. - Andrievsky S.M., Korotin S.A. Silicon abundance
problem in B stars.
22Plan (2016)
- Chekhonadskikh F., (Kovtyukh V.V.) Galactic
abundance gradients from FGK supergiants
alpha-elements. - Mishenina T., (Kovtyukh V.V., Usenko I.) Light
and heavy elements in the stars of the Southern
sky (thick disk). - Korotin S.A., Andrievsky S.M., (Kovtyukh V.V.)
NLTE analysis of Ca for supergiants. - Yushchenko V. Investigation of Ba-type stars.
- Mishenina T.V., Korotin S.A., (Kovtyukh V.V.)
Enrichment with alpha- and neutron capture
elements of globular cluster stars. - Andrievsky S.M., Korotin S.A. Europium NLTE
abundance distribution in Galactic disc.
23