Title: Neutrino masses from double beta decay
1Neutrino masses from double beta decay
- Kai ZuberUniversity of Sussex
2Contents
- Introduction
- Double beta decay
- COBRA
- Outlook
- Summary and conclusions
3Neutrino masses from cosmology
New WMAP measurement SDSS data
Mass bound model dependent, currently done within
?CDM
4Neutrinos in cosmology
M. Tegmark
5Combined SDSS and WMAP data
M. Tegmark et al., Phys. Rev. D 69, 103501 (2003)
6Neutrino mass from cosmology
O. Lahav, Neutrino 2004
Data Authors mn S mi
2dFGRS Elgaroy et al. 02 lt 1.8 eV
WMAP2dF Spergel et al. 03 lt 0.7 eV
WMAP2dF Hannestad 03 lt 1.0 eV
SDSSWMAP Tegmark et al. 04 lt 1.7 eV
WMAP2dF SDSS Crotty et al. 04 lt 1.0 eV
Clusters WMAP Allen et al. 04 0.560.30-0.26 eV
All upper limits 95 CL, but different assumed
priors !
7Oscillation evidences
LSND
sin2 2? 10-1-10-3 , ?m2 0.1-6 eV2
Atmospheric
sin2 2? 1.00 , ?m2 2.1 ? 10-3 eV2
Solar reactors
sin2 2? 0.81 , ?m2 8.2 ? 10-5 eV2
If all three are correct... we need more (sterile
ones)
8Neutrino mass schemes
9Neutrinos mass density
10Contents
- Introduction
- Double beta decay
- COBRA
- Outlook
- Summary and conclusions
11Double beta decay
-
- (A,Z) ? (A,Z2) 2 e- 2?e 2???
0
In nature there are 35 isotopes
2??? Seen in 10 isotopes, important for nuclear
physics input
0??? Only possible if neutrinos are Majorana
particles
12Spectral shapes
0??? Peak at Q-value of nuclear transition
Measured quantity Half-life
Dependencies (BG limited)
T1/2 ? a ? (Mt/?EB)1/2
link to neutrino mass
1 / T1/2 PS NME2 (m? / me)2
Sum energy spectrum of both electrons
133 Flavour oscillations (PMNS)
Analogous to CKM matrix
solar
atmospheric
If sin ?13 ? 0 ? CP-violation
U UPMNS diag(1,e i? ,e i? )
Majorana
14 Physical quantities
Experimental observable Half-life
Double beta decay Effective Majorana neutrino
mass
relative CP phases ?1
Beta decay
me ? Uek2 mk
15Neutrino mass schemes and DBD
normal mass hierarchy m1ltm2ltm3
inverted mass hierarchy m3 lt m1 lt m2
almost degenerate neutrinos m1 m2 m3
quasi-degenerate
hierarchical
16Phase space
0nbb decay rate scales with Q5
2nbb decay rate scales with Q11
Q-value (keV)
(PS 0v)1 (yrs)
(PS 2v) 1 (yrs)
Isotope
Nat. abund. ()
Â
17Heidelberg -Moscow
- Five Ge diodes (overall mass 10.9 kg)
- isotopically enriched ( 86) in 76Ge
- Lead box and nitrogen flushing of the detectors
- Digital Pulse Shape Analysis (factor 5
reduction) Peak at 2039 keV
18Spectrum
0? peak region
19Evidence for 0???-decay?- References
Latest Heidelberg-Moscow results
H.V. Klapdor-Kleingrothaus et al., Eur. Phys. J.
A 12,147 (2001)
Evidence
H.V. Klapdor-Kleingrothaus et al., Mod. Phys.
Lett. A 16,2409 (2001)
Critical comments
F. Feruglio et al., hep-ph/0201291
C.A. Aalseth et al., hep-ex/0202018 and more
Reply
H.V. Klapdor-Kleingrothaus, hep-ph/0205228
H.L. Harney, hep-ph/0205293
New evidence
H.V. Klapdor-Kleingrothaus et al, Phys. Lett. B
586, 198 (2004)
20Evidence I
Statistical significance 53.93 kg x yr
Ignore det. 4 (no muon veto, slightly worse
energy resolution)
Step 1
Apply pulse shape ? 28 kg x yr
Step 2
Completely new statistical treatment - Bayesian
method
Only region of 5? around peak is used for
background determination
21Evidence II
Step 1
Step 2
Some lines known, some are not
Left hand side BG too high, hence for right hand
side onlyregion without lines except the double
beta one
For the double beta line they restrict themselves
to 5 SD region
22Heidelberg-Moscow Evidence
23Heidelberg -Moscow
more statistics Recalibration
Evidence ?
T1/2 0.6 - 8.4 x 1025 yr
m 0.17 - 0.63 eV
Subgroup of collaboration
H.V. Klapdor-Kleingrothaus et al, Phys. Lett. B
586, 198 (2004)
24If peak is real...
1.) Go out and check (GERDA, MAJORANA)
Is peak something specific to Ge?
Uncertainties in the nuclear matrix elements?
? Check with a different isotope
Physics mechanism at work ?
? Tracking
2.) NEMO, COBRA
25Running experiments
CUORICINO cryogenic bolometers40.7 kg TeO2
T1/2 gt 1.8 x 1024 yr (90 CL)
Arnaboldi et al, hep-ex/050134
NEMO-3 TPC
Future CUORE 760 kg TeO2 approved
10 kg enriched foils, 6 kg 100Mo
T1/2 gt 3.1 x 1023 yr (90 CL)
Idea Super-NEMO (100 kg)
26C0BRA
Use large amount of CdZnTe
Semiconductor Detectors
Array of 1cm3 CdTe detectors
K. Zuber, Phys. Lett. B 519,1 (2001)
27Isotopes
nat. ab. ()
Q (keV)
Decay mode
28Advantages
- Semiconductor (Good energy resolution, clean)
- Room temperature (safety)
- Modular design (Coincidences)
Industrial development of CdZnTe detectors
- Tracking (Solid state TPC)
29Cobra - The people
C. Gößling, H. Kiel, D. Münstermann, S. Oehl, T.
Villett
University of Dortmund
T. Leigertwood, D. McKechan, C. Reeve, J. Wilson,
K. Zuber
University of Sussex
P.F. Harrison, B. Morgan, Y. Ramachers, D. Stewart
University of Warwick
A. Boston, P. Booth, P. Nolan
University of Liverpool
B. Fulton, R. Wadsworth
University of York
T. Bloxham, M. Freer
University of Birmingham
P. Seller
Rutherford Appleton Laboratory
M. Junker
Laboratori Nazionali del Gran Sasso
30The 2x2 prototype
Installation of setup at Gran Sasso Underground
Laboratory
4 naked 1cm3 CdZnTe
Very preliminary
Cd113
0? region Cd116
0? region Te130
2.5 kg x days of data
31The 64 detector array
Aim for next 2 years The next step towards a
large scale experiment, Scalable modular design,
explore coincidences
Mass factor 16 higher, about 0.4 kg CdZnTe
Include CoolingNitrogen flushing
- Physics
- - Can access
- 2?ECEC in theoreticallypredicted region
- Precision measurement of 113Cd
- - New limits
Part of the detectors at Dortmund
32The solid state TPC
Introduce tracking properties by using
segmented, Pixellated electrodes and pulse shape
analysis
Single electron spectra
Angular correlation coefficient ?
33Pixellated detectors
3D - Pixelisation
34Contents
- Introduction
- Double beta decay
- COBRA
- Outlook
- Summary and conclusions
350nbb Experimental Situation
2 main experimental approaches
- Active Source
- Passive Source
Best 0n2b results involve active source
experiments
Experiment Isotope T1/20n (y) ltmngt (eV)
You Ke et al. 1998 48Ca gt 9.5 ? 1021 (76) lt 8.3
Klapdor-Kleingrothaus 2001 76Ge gt 1.9 ? 1025 lt 0.35
Aalseth et al 2002 gt 1.57 ? 1025 lt 0.33 - 1.35
Arnold et al. 2004 82Se gt 1.3 x 1023 lt 1.5-3.1
Arnold et al. 2004 100Mo gt3.1 ? 1023 lt 0.33-0.84
Danevich et al. 2000 116Cd gt 1 ? 1023 lt 2.2
Bernatowicz et al. 1993 130/128Te (3.52 ?0.11) ? 10-4 lt 1.1 1.5
Bernatowicz et al. 1993 128Te gt 7.7 ? 1024 lt 1.1 1.5
Arnaboldi et al. 2005 130Te gt 1.8 ? 1024 lt 0.5 1.1
Luescher et al. 1998 136Xe gt 4.4 ? 1023 lt 1.8 5.2
Belli et al. 2001 136Xe gt 7 ? 1023 lt 1.4 4.1
De Silva et al. 1997 150Nd gt 1.2 ? 1021 lt 3
Danevich et al. 2001 160Gd gt 1.3 ? 1021 lt 26
36Back of the envelope
T1/2 ln2 a NA M t / N?? (t??T) (
Background free)
50 meV implies half-life measurements of 1026-27
yrs
1 event/yr you need 1026-27 source atoms
This is about 1000 moles of isotope, implying 100
kg
Now you only can loose nat. abundance,
efficiency, background, ...
372??? - decay
2??? is ultimate, irreducible background
Energy resolution important ? semiconductor
Fraction of 2??? in 0 ??? peak
S. Elliott, P. Vogel, Ann. Rev. Nucl. Part. Sci.
2002
Signal/Background
Tracking option
38Future projects
O.Cremonesi, n 2002
Experiment Author Isotope Detector description T5y1/2(y) ltmngt
COBRA Zuber 2001 116Cd 10 kg CdTe semiconductors 1 x 1024 0.71
CUORICINO Arnaboldi et al 2001 130Te 40 kg of TeO2 bolometers 1.5 x 1025 0.19
NEMO3 Sarazin et al 2000 100Mo 10 kg of bb(0n) isotopes (7 kg Mo) with tracking 4 x 1024 0.56
CUORE Arnaboldi et al. 2001 130Te 760 kg of TeO2 bolometers 7 x 1026 0.027
EXO Danevich et al 2000 136Xe 1 t enriched Xe TPC 8 x 1026 0.052
GEM Zdesenko et al 2001 76Ge 1 t enriched Ge diodes in liquid nitrogen water shield 7 x 1027 0.018
GENIUS Klapdor-Kleingrothaus et al 2001 76Ge 1 t enriched Ge diodes in liquid nitrogen 1 x 1028 0.015
MAJORANA Aalseth et al 2002 76Ge 0.5 t enriched Ge segmented diodes 4 x 1027 0.025
DCBA Ishihara et al 2000 150Nd 20 kg enriched Nd layers with tracking 2 x 1025 0.035
CAMEO Bellini et al 2001 116Cd 1 t CdWO4 crystals in liquid scintillator gt 1026 0.069
CANDLES Kishimoto et al 48Ca several tons of CaF2 crystal in liquid scintillator 1 x 1026
GSO Danevich 2001 160Gd 2 t Gd2SiO5Ce cristal scintillator in liquid scintillator 2 x 1026 0.065
MOON Ejiri et al 2000 100Mo 34 t natural Mo sheets between plastic scintillator 1 x 1027 0.036
Xe Caccianiga et al 2001 136Xe 1.56 t of enriched Xe in liquid scintillator 5 x 1026 0.066
XMASS Moriyama et al 2001 136Xe 10 t of liquid Xe 3 x 1026 0.086
Staudt, Muto, Klapdor-Kleingrothaus Europh.
Lett 13 (1990) 31
39Future - Ge approaches
MAJORANA
500 kg of enrichedGe detectors
GERDA
Naked enriched Ge-crystals inLAr with lead shield
Segmentation and pulse shape discrimination
20 kg enriched Ge-detectorsat hand (former HD-MO
and IGEX)
MERGE
40EXO
New feature
Tracking and scintillation
136Xe ? 136Ba e- e- final state can be
identified using optical spectroscopy (M.Moe
PRC44 (1991) 931)
200 kg enriched Xe prototype under construction
at WIPP
41?? - modes
n
p
e
In general
Double charged higgs bosons, R-parity violating
SUSY couplings, leptoquarks...
e
p
n
Q-4mec2
- (A,Z) ? (A,Z-2) 2 e (2?e) ??
Q-2mec2
- e- (A,Z) ? (A,Z-2) e (2?e ) ?/EC
Q
- 2 e- (A,Z) ? (A,Z-2) (2?e) EC/EC
Important to reveal mechanism if 0??? is
discovered
Enhanced sensitivity to right handed weak
currents (VA)
42Summary
Double beta decay is the gold plated channel to
probethe fundamental character of neutrinos
Taking current evidences from oscillation data it
islikely to be the only way to fix the absolute
neutrino mass
To go below 50 meV requires hundreds of kilograms
ofenriched material
However, there is a hotly discussed evidence by
the Heidelberg group, which would imply almost
degenerate neutrinos
A lot of proposals and RD projects among them is
COBRA using CdZnTe semiconductors
We need info on nuclear matrix elements !
43Join the Party!