Title: MFDFA
1??????????? ?????? ?? ??????? ?????? ? ????????
?????????? ? ???????????????, ??????????,
??????????? ? ?????????? ????????
- ??????? ?. ???????
- ???????? ?? ???????? ?? ???
2??????????
- ????
- ??????????? ?????? ?? ??????? ??????
- MFDFA
- ???????-?????? ???? ????????? ???????
- Grey forecasting ? ?????? ???????
- ???????????? ????
3???? ?? ?????? ???????? ?? ??????? ???????
4??????????? ?????? ?? ??????? ??????
5????? ??????? ???. ??? ?? ?? ????????????
- ??????????????
- ???????????? ??? ???????.
- ????????? ??? ??????! ??? ? ??? ? ????? ????
???????????? ???? ? ??????? ????????? ?? ???
????????? ?? ??????? ???? ?? ?? ??????? ????
?????????? ?? ????????? ?? ????? ?????. ??? ??
? ??? ?????? ?? ?? ???????? ????????? ??
???????-???? ????????? ????? ??????? (??????
??????) - ???????????? ?? ? ??? ?????? ????????
??????????, ???????????????? ???????, ??????? ??
?????????
6???????????????? ???????
- ??????????????? ???????
- s ?????????? ?????????? (std)
7??????? ?? ?????????
8Delay reconstruction ?? ???????? ???????????? ??
?????????? ????? ??????????? ???
9??? ??? ????????? ??? ? ??? ? ??????????????
- ??? ???? ?? ?? ??????? ????? ?? ???????? ??PCA
SSA (??? ???????? ?? ??????? ?? ???? ??
?????????? ????????) - ???? ?????? ???? ?? ?? ?????????? ? ???? ??????
10????? ? ???????????? ?? ????????????????
???????????? ?
- ????? ?? ????????? ?????? ??? ???????????? ?
????????????, ????? ????? ??? ????? ???????
?????? (?????????? ? ????????). ? ?????????????
?? ???????????? ?? ?????????????? ???? ???????
?????? ????????. ??????????? ?? ????????? ????
?????? ?????? ?? ???? ???????????? m ??
???????????????? ?????? ????????????. ????
?????????? ? ???? 2 ???? ?? ?????? ??
???????????? ?? ?????????? ?????? ????????????.
11????? ? ?????????
- ????????? ??????? ???? ?? ??????????????????
??????? ?????? ????????? ?? ???????? - ????????? ?? ??????????? ?????????? ??????
????????
12???? ? ???????? ???? ???? Takens delay embedding
theorem (Sauer-Yorke-Casdagli version)
13?????!
- ???? ?????????????? ????? ?????? ????????
????????????, ???????????? ???????? ???????????
?? ?????????, ?????????? ?? ???????, ???????? ?
?. ?. ???? ?????? ????????? ????? ? ????????
?????? ???????????? (????? ??? ?? ?????????)
14?????-??????? ?? ????? ???????? ?? ???
??????????? ?? ??????????
15????????!
- ?????? ??????????! ?? ?????????? ?????????
??????????, ????? ?? ????? ???????? ????? ???? ?
?????????? ? ????????????? ?????????, ?????
?????? ?? ?? ???????? ? ??????????? ??????????
????????. ????????????? ?? ??? ?????????? ??????
??????? ????! - ????? ???? ???? ?????? 1999 ?. ????????? ??
?????????????? ?????????? ????????. ?????? ????,
????? ??????? ? ?????? ????? ????? ???? ?????
????????? ? ?? ???????? ?? 2000 ?. ???????? ????
???? ??????.
16???????? ? ????????? ??????
17MFDFA ???????? ????? ? ?????? ?? ???? ??? (R-S
analysis and the Hurst exponent)
- Once upon a time, a British government bureaucrat
named Harold Edwin Hurst studied 800 years of
records of the Nile's flooding. He noticed that
there was a tendency for a high flood year to be
followed by another high flood year, and for a
low flood year to be followed by another low
flood year. - Was that accidental ... or was there really some
correlation between levels? Did the height at
year 5 have an effect on the height in year 6?
18??????????? ?? ?????
- To analyze, we might do something like this
- Note the heights of the n flood levels
h(1), h(2), ... h(n) - Let m be the Mean of these levels M
(1/n) h(1)h(2)...h(n) - Calculate the deviations from the mean
x(1) h(1) - M x(2) h(2) - M ...
x(n) h(n) - M Note that the set of xs
have zero mean. Positive x's indicate that the
Nile level was above the average. - Now calculate the Sums Y(1) x(1)
Y(2) x(1) x(2) ... Y(n) x(1)
x(2) ... x(n) Note that the set of partial
sums, the Y's, are sums of zero-mean variables.
They will be positive if there's a preponderance
of positive x's. Note, too, that Y(k) Y(k-1)
x(k). - Let R(n) MAXY(k) - MINY(k) This difference
between the maximum and minimum of the n values
is called the Range - Let s(n) be the standard deviation of the set of
n h-values.
19??????????? ?? ????? (2)
- As it turns out, the probability theorist William
Feller proved that if a series of random
variables (like the x's) had finite standard
deviation and were independent, then the
so-called R/s statistic (formed over n
observations) would increase in proportion to
n1/2 (for large values of n). - We now have R(n) / s(n) kn1/2 ...
where k is some constant - If that were true, then we'd expect that
- log(R/s ) log(k) (1/2) log(n)
- So, if we were to plot log(R/s ) vs log(n), we'd
expect it to be approximately a straight line
with slope (1/2). - gtA logarithm to what base? ???? ???????? !
20????? ????? ?? ??????? 0.5 ? ???? ?????...
- Anyway, what Hurst apparently found, was that the
plot had a slope closer to 0.7 (rather than 0.5).
- gtSo, what's that mean? I guess it means that the
annual Nile levels weren't independent, but this
year's level might be expected to affect next
year's level. Indeed, if the slope of the log(R
/ s ) vs log(n) "best fit line" is H, then we'd
expect R / s knH - That H is the Hurst Exponent, right?
- ??!
21The Hurst Exponent and Fractional Brownian Motion
- Brownian walks can be generated from a defined
Hurst exponent. If the Hurst exponent is 0.5 lt H
lt 1.0, the random walk will be a long memory
process. Data sets like this are sometimes
referred to as fractional Brownian motion
(abbreviated fBm). - Fractional Brownian motion is sometimes referred
to as 1/f noise. Since these random walks are
generated from Gaussian random variables (sets of
numbers), they are also referred to as fractional
Gaussian noise (or fGn).
22The Hurst Exponent and Fractional Brownian Motion
23???????????? ????????? ?? ?????, ?????????????
????????? ?? ??????? - MFDFA
24MFDFA (2)
25MFDFA (3)
26MFDFA (4)
27?????? ?? ?????????? ?? MFDFA
28?????????? ?? MFDFA (2)
29?????????? ?? MFDFA (3)
30?????????? ?? MFDFA (4)
31????? ?????? ???? ????????? ???????
32??? ????? ??????
33??????? ??? ?????????? ????????? Draupner
(01.01.1995)
34??????????????? ?? Weibull ? ??????? ???
??????????? Draupner
- ????????? ??? ? ????????????? ??????????? ????
?????????? ????????? ?? ????????-??????? ??
??????????? ?????? ??????? ? ?????-???? ???????
(1000 ?????) ???????? ????
35?????? ?? ????????????? ? ???????? ??????????
- The clustering index T 1
- Estimation of T runs estimator, interexceedance
times estimator - Runs estimator
36Interexceedances times estimator of the
clustering index
37????? ? ??????????????? ?? ??????????? ?????????
quantile-quantile plots
38Quantile-quantile plots (2)
39Quantile-Quantile plots (3)
- Q standard exponential quantile
- Q time series quantile
- Presence of heavy tail
40??? ???? ????????????? ?? ??????????? ???????
Weibull, Gumbel, Frechet - Pareto
41Quantile-quantile plot calculation for Weibull
distribution
42Q-Q plots Gumbel vs. time series quantile
- ????????????? ?? ???????
- ?? !
43Q-Q plots Frechet-Pareto vs. time series quantile
- ????????????? ?? ????? ???????
- ?? !
44??? ?????? Weibull ?
45Distribution of maxima of time series fitted by
the Weibull distribution
- F 1-exp(-? xr)
- ? 0.148
- r 1.468
46Probabilities for rogue waves at the Draupner
platform
- Height
- 18.45 m
- 19 m
- 21 m
- 23 m
- 25 m
- 27 m
- 29 m
- 31 m
- Probability
- 0.0000230
- 0.0000143
- 0.00000246
- 0.000000390
- 0.000000057
- 0.00000000776
- 0.000000000985
- 0.000000000117
47Grey forecasting ? ?????? ??????? (?????????
????? ?? ?????????????)
- ????? ?????? ?? ?? ????????? ?? ???? ?????????
2010 ??
??????? ????????? ??????? ????? ??????? ? ???? ????????? ????
?????? ????????? 1082
?????? ?????? ????????? ????? ?????? 1562 (2 x 781)
?????? ?????? ????????? ????? ?????? 2042 (1562480)
????-???????????? ?? ??? 2522(2042480)
???????? 3002 (2522480)
48? ???? ?????? ?? ?? ???????
- ???????????? ? ???????? ????? ??????? ???,
??????? ?? ????????????? ?? ??????????? ???????
?? ????????? ?? ????? ?????? ?????? ?????????? ??
??????????? ???????? ?? ???????, ?? ?????? ?? 64
?????? ?? ???????? ?? ????? 2004 ? ?? ?????? 2009
?. ???? ????????? ??????? ?? ???????????? ??
?????????? ???????? ???????, ???????????
??????????? ??????? ?? ?????, ?????????????,
?????????, ????????? ? ??????? ?? ?????, ??????
?????? ????? ? ??????? ?? ????? ? ??????. ????
????????? ??????? ?? ?? ?????????? ?????????,
????? ?? ??????? ?? ?????????, ???? ????? ???
????? ? ?????????? ?? ?????? ? ??????. ?
??????????? ??????? ?? ?????? ? ????????? ??
?????? ?? ?????? ? ????, ????????? ?? ??????????
?? ???? ?????? ? ????, ????? ? ????????? ??
???????? ? ??????? ? ?? ??????????? ?? ?????
????????. ????? ?? ???????????? ????? ????? ?? ??
? ???????? ?????????, ??????? ? ??????? ?????????
? ?? ?????? ?????????????? ????????? ????? ??
???????, ???? ? ?? ??????? ???????? ?
????????????? ???? ????? ????????? ??????.
49Grey forecasting method
50Grey forecasting method (2)
51????????? ????? ? ??????? GFM ?????
52????????? ?? ??????????? ?? ??????? ??????? ?????
?? ?????
53??? ?? ??????? ????????? ?? ????????? (??? ?? ???
???????? ?????????? ???????? ?? ???????? ??
??????? ?? ???)
54???????? ????????? ?? ???????
55????????? ????????? ??? ?????????? ????
56??? ?? ?? ????????? ????????? ? ???????????
????? ?? ????????? ?? ?? ?????????? ?? ?????? ??
?????????? ?? ?????? ????????
57? ???? ???????????? ?? ????????, ????? ??? ??????
?? ?????????
- Dark side of the Force (THE NONLINEAR TIME SERIES
ANALYSIS) is pathway to many abilities some
consider to be unnatural.
58????? ?? ????? ??? ?? ????? ?????? ?? ??????? ??
??????? ?????? !
59??? ????? ? ?? ?????????????? ?????? ? wavelets !
60??? ???? ?? ???????????? ?? ??????? ??? ?????
??????????? ??????? ???? ???
61????? ?? ?? ???????? ? ?????????? ?????? ??
??????? ?????? ? ??????????? ?????? ??
??????????? ????
62??? ???? ??-???? ???? ?? ??????????
63??? ?? ???? ?? ?????? ??? ?? ?? ? ??????????? ??
????? ????????, ? ?? ? ???? ??????? ??? ????? ?
???????
64????????? ?? ?????????? !