MFDFA - PowerPoint PPT Presentation

About This Presentation
Title:

MFDFA

Description:

Distribution of maxima of time series fitted by the Weibull distribution Probabilities for rogue waves at the Draupner platform Grey forecasting ... – PowerPoint PPT presentation

Number of Views:59
Avg rating:3.0/5.0
Slides: 65
Provided by: kjh50
Category:
Tags: mfdfa | rogue | waves

less

Transcript and Presenter's Notes

Title: MFDFA


1
??????????? ?????? ?? ??????? ?????? ? ????????
?????????? ? ???????????????, ??????????,
??????????? ? ?????????? ????????
  • ??????? ?. ???????
  • ???????? ?? ???????? ?? ???

2
??????????
  • ????
  • ??????????? ?????? ?? ??????? ??????
  • MFDFA
  • ???????-?????? ???? ????????? ???????
  • Grey forecasting ? ?????? ???????
  • ???????????? ????

3
???? ?? ?????? ???????? ?? ??????? ???????
4
??????????? ?????? ?? ??????? ??????
5
????? ??????? ???. ??? ?? ?? ????????????
  • ??????????????
  • ???????????? ??? ???????.
  • ????????? ??? ??????! ??? ? ??? ? ????? ????
    ???????????? ???? ? ??????? ????????? ?? ???
    ????????? ?? ??????? ???? ?? ?? ??????? ????
    ?????????? ?? ????????? ?? ????? ?????. ??? ??
    ? ??? ?????? ?? ?? ???????? ????????? ??
    ???????-???? ????????? ????? ??????? (??????
    ??????)
  • ???????????? ?? ? ??? ?????? ????????
    ??????????, ???????????????? ???????, ??????? ??
    ?????????

6
???????????????? ???????
  • ??????????????? ???????
  • s ?????????? ?????????? (std)

7
??????? ?? ?????????
8
Delay reconstruction ?? ???????? ???????????? ??
?????????? ????? ??????????? ???
9
??? ??? ????????? ??? ? ??? ? ??????????????
  • ??? ???? ?? ?? ??????? ????? ?? ???????? ??PCA
    SSA (??? ???????? ?? ??????? ?? ???? ??
    ?????????? ????????)
  • ???? ?????? ???? ?? ?? ?????????? ? ???? ??????

10
????? ? ???????????? ?? ????????????????
???????????? ?
  • ????? ?? ????????? ?????? ??? ???????????? ?
    ????????????, ????? ????? ??? ????? ???????
    ?????? (?????????? ? ????????). ? ?????????????
    ?? ???????????? ?? ?????????????? ???? ???????
    ?????? ????????. ??????????? ?? ????????? ????
    ?????? ?????? ?? ???? ???????????? m ??
    ???????????????? ?????? ????????????. ????
    ?????????? ? ???? 2 ???? ?? ?????? ??
    ???????????? ?? ?????????? ?????? ????????????.

11
????? ? ?????????
  • ????????? ??????? ???? ?? ??????????????????
    ??????? ?????? ????????? ?? ????????
  • ????????? ?? ??????????? ?????????? ??????
    ????????

12
???? ? ???????? ???? ???? Takens delay embedding
theorem (Sauer-Yorke-Casdagli version)
13
?????!
  • ???? ?????????????? ????? ?????? ????????
    ????????????, ???????????? ???????? ???????????
    ?? ?????????, ?????????? ?? ???????, ???????? ?
    ?. ?. ???? ?????? ????????? ????? ? ????????
    ?????? ???????????? (????? ??? ?? ?????????)

14
?????-??????? ?? ????? ???????? ?? ???
??????????? ?? ??????????
15
????????!
  • ?????? ??????????! ?? ?????????? ?????????
    ??????????, ????? ?? ????? ???????? ????? ???? ?
    ?????????? ? ????????????? ?????????, ?????
    ?????? ?? ?? ???????? ? ??????????? ??????????
    ????????. ????????????? ?? ??? ?????????? ??????
    ??????? ????!
  • ????? ???? ???? ?????? 1999 ?. ????????? ??
    ?????????????? ?????????? ????????. ?????? ????,
    ????? ??????? ? ?????? ????? ????? ???? ?????
    ????????? ? ?? ???????? ?? 2000 ?. ???????? ????
    ???? ??????.

16
???????? ? ????????? ??????
17
MFDFA ???????? ????? ? ?????? ?? ???? ??? (R-S
analysis and the Hurst exponent)
  • Once upon a time, a British government bureaucrat
    named Harold Edwin Hurst studied 800 years of
    records of the Nile's flooding. He noticed that
    there was a tendency for a high flood year to be
    followed by another high flood year, and for a
    low flood year to be followed by another low
    flood year.
  • Was that accidental ... or was there really some
    correlation between levels? Did the height at
    year 5 have an effect on the height in year 6?

18
??????????? ?? ?????
  • To analyze, we might do something like this
  • Note the heights of the n flood levels      
    h(1), h(2), ... h(n)
  • Let m be the Mean of these levels       M
    (1/n) h(1)h(2)...h(n)
  • Calculate the deviations from the mean      
    x(1) h(1) - M       x(2) h(2) - M       ...
          x(n) h(n) - M Note that the set of xs
    have zero mean. Positive x's indicate that the
    Nile level was above the average.
  • Now calculate the Sums       Y(1) x(1)      
    Y(2) x(1) x(2)       ...       Y(n) x(1)
    x(2) ... x(n) Note that the set of partial
    sums, the Y's, are sums of zero-mean variables.
    They will be positive if there's a preponderance
    of positive x's. Note, too, that Y(k) Y(k-1)
    x(k).
  • Let R(n) MAXY(k) - MINY(k) This difference
    between the maximum and minimum of the n values
    is called the Range
  • Let s(n) be the standard deviation of the set of
    n h-values.

19
??????????? ?? ????? (2)
  • As it turns out, the probability theorist William
    Feller proved that if a series of random
    variables (like the x's) had finite standard
    deviation and were independent, then the
    so-called R/s statistic (formed over n
    observations) would increase in proportion to
    n1/2 (for large values of n).
  • We now have       R(n) / s(n) kn1/2    ...
    where k is some constant
  • If that were true, then we'd expect that
  •       log(R/s ) log(k) (1/2) log(n)
  • So, if we were to plot log(R/s ) vs log(n), we'd
    expect it to be approximately a straight line
    with slope (1/2).
  • gtA logarithm to what base? ???? ???????? !

20
????? ????? ?? ??????? 0.5 ? ???? ?????...
  • Anyway, what Hurst apparently found, was that the
    plot had a slope closer to 0.7 (rather than 0.5).
  • gtSo, what's that mean? I guess it means that the
    annual Nile levels weren't independent, but this
    year's level might be expected to affect next
    year's level. Indeed, if the slope of the log(R
    / s ) vs log(n) "best fit line" is H, then we'd
    expect       R / s knH
  • That H is the Hurst Exponent, right?
  • ??!

21
The Hurst Exponent and Fractional Brownian Motion
  • Brownian walks can be generated from a defined
    Hurst exponent. If the Hurst exponent is 0.5 lt H
    lt 1.0, the random walk will be a long memory
    process. Data sets like this are sometimes
    referred to as fractional Brownian motion
    (abbreviated fBm).
  • Fractional Brownian motion is sometimes referred
    to as 1/f noise. Since these random walks are
    generated from Gaussian random variables (sets of
    numbers), they are also referred to as fractional
    Gaussian noise (or fGn).

22
The Hurst Exponent and Fractional Brownian Motion
23
???????????? ????????? ?? ?????, ?????????????
????????? ?? ??????? - MFDFA
24
MFDFA (2)
25
MFDFA (3)
26
MFDFA (4)
27
?????? ?? ?????????? ?? MFDFA
28
?????????? ?? MFDFA (2)
29
?????????? ?? MFDFA (3)
30
?????????? ?? MFDFA (4)
31
????? ?????? ???? ????????? ???????
32
??? ????? ??????
33
??????? ??? ?????????? ????????? Draupner
(01.01.1995)
34
??????????????? ?? Weibull ? ??????? ???
??????????? Draupner
  • ????????? ??? ? ????????????? ??????????? ????
    ?????????? ????????? ?? ????????-??????? ??
    ??????????? ?????? ??????? ? ?????-???? ???????
    (1000 ?????) ???????? ????

35
?????? ?? ????????????? ? ???????? ??????????
  • The clustering index T 1
  • Estimation of T runs estimator, interexceedance
    times estimator
  • Runs estimator

36
Interexceedances times estimator of the
clustering index
37
????? ? ??????????????? ?? ??????????? ?????????
quantile-quantile plots
38
Quantile-quantile plots (2)
39
Quantile-Quantile plots (3)
  • Q standard exponential quantile
  • Q time series quantile
  • Presence of heavy tail

40
??? ???? ????????????? ?? ??????????? ???????
Weibull, Gumbel, Frechet - Pareto
41
Quantile-quantile plot calculation for Weibull
distribution
42
Q-Q plots Gumbel vs. time series quantile
  • ????????????? ?? ???????
  • ?? !

43
Q-Q plots Frechet-Pareto vs. time series quantile
  • ????????????? ?? ????? ???????
  • ?? !

44
??? ?????? Weibull ?
  • ??!

45
Distribution of maxima of time series fitted by
the Weibull distribution
  • F 1-exp(-? xr)
  • ? 0.148
  • r 1.468

46
Probabilities for rogue waves at the Draupner
platform
  • Height
  • 18.45 m
  • 19 m
  • 21 m
  • 23 m
  • 25 m
  • 27 m
  • 29 m
  • 31 m
  • Probability
  • 0.0000230
  • 0.0000143
  • 0.00000246
  • 0.000000390
  • 0.000000057
  • 0.00000000776
  • 0.000000000985
  • 0.000000000117

47
Grey forecasting ? ?????? ??????? (?????????
????? ?? ?????????????)
  • ????? ?????? ?? ?? ????????? ?? ???? ?????????
    2010 ??

??????? ????????? ??????? ????? ??????? ? ???? ????????? ????
?????? ????????? 1082
?????? ?????? ????????? ????? ?????? 1562 (2 x 781)
?????? ?????? ????????? ????? ?????? 2042 (1562480)
????-???????????? ?? ??? 2522(2042480)
???????? 3002 (2522480)
48
? ???? ?????? ?? ?? ???????
  • ???????????? ? ???????? ????? ??????? ???,
    ??????? ?? ????????????? ?? ??????????? ???????
    ?? ????????? ?? ????? ?????? ?????? ?????????? ??
    ??????????? ???????? ?? ???????, ?? ?????? ?? 64
    ?????? ?? ???????? ?? ????? 2004 ? ?? ?????? 2009
    ?. ???? ????????? ??????? ?? ???????????? ??
    ?????????? ???????? ???????, ???????????
    ??????????? ??????? ?? ?????, ?????????????,
    ?????????, ????????? ? ??????? ?? ?????, ??????
    ?????? ????? ? ??????? ?? ????? ? ??????. ????
    ????????? ??????? ?? ?? ?????????? ?????????,
    ????? ?? ??????? ?? ?????????, ???? ????? ???
    ????? ? ?????????? ?? ?????? ? ??????. ?
    ??????????? ??????? ?? ?????? ? ????????? ??
    ?????? ?? ?????? ? ????, ????????? ?? ??????????
    ?? ???? ?????? ? ????, ????? ? ????????? ??
    ???????? ? ??????? ? ?? ??????????? ?? ?????
    ????????. ????? ?? ???????????? ????? ????? ?? ??
    ? ???????? ?????????, ??????? ? ??????? ?????????
    ? ?? ?????? ?????????????? ????????? ????? ??
    ???????, ???? ? ?? ??????? ???????? ?
    ????????????? ???? ????? ????????? ??????.

49
Grey forecasting method
50
Grey forecasting method (2)
51
????????? ????? ? ??????? GFM ?????
52
????????? ?? ??????????? ?? ??????? ??????? ?????
?? ?????
53
??? ?? ??????? ????????? ?? ????????? (??? ?? ???
???????? ?????????? ???????? ?? ???????? ??
??????? ?? ???)
54
???????? ????????? ?? ???????
55
????????? ????????? ??? ?????????? ????
56
??? ?? ?? ????????? ????????? ? ???????????
????? ?? ????????? ?? ?? ?????????? ?? ?????? ??
?????????? ?? ?????? ????????
57
? ???? ???????????? ?? ????????, ????? ??? ??????
?? ?????????
  • Dark side of the Force (THE NONLINEAR TIME SERIES
    ANALYSIS) is pathway to many abilities some
    consider to be unnatural.

58
????? ?? ????? ??? ?? ????? ?????? ?? ??????? ??
??????? ?????? !
59
??? ????? ? ?? ?????????????? ?????? ? wavelets !
60
??? ???? ?? ???????????? ?? ??????? ??? ?????
??????????? ??????? ???? ???
61
????? ?? ?? ???????? ? ?????????? ?????? ??
??????? ?????? ? ??????????? ?????? ??
??????????? ????
62
??? ???? ??-???? ???? ?? ??????????
63
??? ?? ???? ?? ?????? ??? ?? ?? ? ??????????? ??
????? ????????, ? ?? ? ???? ??????? ??? ????? ?
???????
64
????????? ?? ?????????? !
Write a Comment
User Comments (0)
About PowerShow.com