Probing Supersymmetry with Neutral Current Scattering Experiments - PowerPoint PPT Presentation

1 / 21
About This Presentation
Title:

Probing Supersymmetry with Neutral Current Scattering Experiments

Description:

Probing Supersymmetry with Neutral Current Scattering Experiments Shufang Su U. of Arizona – PowerPoint PPT presentation

Number of Views:139
Avg rating:3.0/5.0
Slides: 22
Provided by: Shuf156
Category:

less

Transcript and Presenter's Notes

Title: Probing Supersymmetry with Neutral Current Scattering Experiments


1
Probing Supersymmetry with Neutral Current
Scattering Experiments
  • Shufang Su U. of Arizona

2
Sub-Z precision measurements
-
  • neutral current scattering
  • heavy quark physics
  • CP violation, EDM
  • Rare K-decay, CKM unitarity
  • muon g-2
  • lepton flavor violation
  • polarized ee scattering (SLAC E158)
  • polarized ep scattering (JLab Qweak)
  • neutrino-nucleus scattering (NuTeV)

A. Kurylov, M. Ramsey-Musolf, SS
3
Outline
-
  • motivation
  • parity-violating electron scattering experiments
  • radiative corrections to weak charge QW
  • analysis of SUSY contributions to QW
  • MSSM contributions
  • RPV analysis
  • distinguish various new physics / SUSY
  • NuTeV experiment
  • MSSM contributions
  • RPV analysis
  • conclusion

4
Motivation
-
  • high precision low energy experiment available
  • - muon g-2 Mm? , ?new ? 2x10-9, ?exp lt 10-9
  • ?-decay, ?-decay MmW , ?new ? 10-3, ?exp ? 10-3
  • parity-violating electron scattering MmW , ?new
    ? 10-3,
  • 1/Qe,pW ?10 more sensitive to new physics
  • need ?exp ? 10-2 easier experiment
  • indirectdirect complementary information
  • consistency test of theory at loop level

size of loop effects from new physics
(?/?)(M/Mnew)2
Qe,pW ? 1-4 sin2?W ? 0.1
  • probe new physics off the Z-resonance
  • - sensitive to new physics not mix with Z

5
Test of sin2?W running
-
  • sin2?W(0) - sin2?W(mZ2) 0.007
  • QCsw agree Q20
  • NuTeV 3? Q220 (GeV)2
  • parity-violating electron
  • scattering (PVES)
  • ee Moller scattering (SLAC) QeW
  • ep elastic scattering (J-lab) QpW

-
  • clean environment Hydrogen target
  • theoretically clean small hadronic
    uncertainties
  • tree level ? 0.1 ? sensitive to new physics

6
Goal
-
  • minimal Supersymmetric extension of SM (MSSM)
  • SUSY most promising candidate for new physics
  • solution to Hierarchy problem
  • gauge coupling unification
  • provide a natural electroweak symmetry breaking
  • dark matter candidate ? (PVES)
  • with R-parity loop corrections
  • without R-parity tree-level contribution
  • low-energy precision measurements
  • PVES weak charge QeW , QpW , ( QCsW ) - NuTeV
    R?(?)

-
7
Weak charge QW
-
geA Ie3
QCsW ? sin2?W 0.0021 NuTeV ? sin2?W
0.0016
8
General structure of radiative corrections to QfW
-
Including radiative corrections
QfW ? (2If3 - 4 ? Qf s2) ?f

?, ? universal, ?f depend on fermion
species
? 1??SM??SUSY, ? 1??SM??SUSY, ?f
?fSM?fSUSY
?
9
Radiative contributions
-
QfW ? (2If3 - 4 ? Qf s2) ?f
?

?f
10
MSSM particle contents
-
Spin differ by 1/2
SM particle superpartner
mass parameter

??, tan?vu/vd
M3
M2
M1
11
SUSY interactions
-
replace two SM particles into SUSY partners
? gauge coupling
?

?
? gauge coupling
?
? Yukawa coupling
12
One loop SUSY contributions to PVES
-
  • gauge boson
  • self-energies

  • external leg corrections
  • vertex corrections
  • box diagrams

13
Numerical analysis
-
  • Model-independent analysis
  • MSSM parameter range random scan

  • hard to impose bounds on certain MSSM parameter
  • show the possible range of MSSM corrections
  • impose exp search limit on SUSY particles
  • impose S-T 95 CL constraints
  • impose g-2 constraints (2nd slepton LR mixing)

14
Correction to weak charge
-
QfW ? (2Tf3 - 4Qf ? s2) ?f
  • QeW and QpW correlated

dominant ?? (lt0) ? negative shift in sin2?W
? (QpW)SUSY / (QpW)SM lt 4, ? (QeW)SUSY / (QeW)SM
lt 8
15
Dominant contributions
-
QfW ? (2Tf3 - 4Qf ? s2) ?f
  • non-universal corrections
  • vertex wavefunction cancel
  • box diagrams numerically suppressed
  • ?? contribution suppressed by (1-4 s2)
  • dominant contribution from ??


?? (lt0) ? negative shift in sin2?W
16
Various contributions to ??
-
S
  • within ??
  • various terms have comparable importance
  • oblique approximation gives a poor description

T
  • ?? lt0 (? (Qe,pW)SUSY / (Qe,pW)SM gt0 ) ?
    reduction in effective sin2?W

17
R-parity
-
  • General MSSM, including B,L-violating operators

?ijk

?ijk
  • dangerous ? introduce proton decay
  • R-parity SM particle even superparticle odd
  • stable LSP as dark matter candidate
  • RPV only look at L-violating operator

18
R-parity violating (RPV)
-
  • RPV operators contribute to Qe,pW at tree level
  • Exp constraints
  • ? decay ?Vud -0.00145 ? 0.0007
  • APV(Cs) ? QWCs -0.0040 ? 0.0066
  • Re/? ? Re/? -0.0042 ? 0.0033
  • G? ? G? 0.00025 ? 0.00188

?QpW
No SUSY dark matter
I) Obtain 95 CL allowed region in RPV
coefficients II) Evaluate ? QWe and ? QWp
G?
19
Correlation between QpW and QeW
-
? ? QW(Z,N) / QW(Z,N) lt 0.2 for Cs
  • Distinguish new physics

20
Additional PV electron scattering ideas
-
Czarnecki, Marciano, Erler et al.
? N deep inelastic
sin2?W
APV
ee- LEP, SLD
SLAC E158 (ee)
JLab Q-Weak (ep)
??(GeV)
21
NuTeV experiment
-
NC
CC
22
Gluino contribution
-
negative gluino contribution
  • CC data constraints
  • Kurylov, Ramsey-Musolf,PRL88,071804,2002
  • large LR-mixing
  • both up/down sector
  • inconsistent with current
  • CC data
  • constraints relaxed if first
  • row CKM unitarity confirmed
  • could partially account for
  • deviation in sin2?W


unitarity deviation decrease by 1/3 ?
23
Deviation of sin2?W
-
  • extracted using Paschos-Wolfenstein relation
  • in practice, modified version
  • ? different from r
  • ? charm quark mass
  • uncertainties
  • gluino contributions
  • ? ? - r


1C 0C
mc constrained free
? 0.249 0.453
?sin2?W -1.6x10-3 -1x10-4
24
R-parity violating (RPV)
-
-
  • RPV operators contribute to R?(?) at tree level
  • either wrong sign or too small
  • hard to explain NuTeV deviation

25
Conclusion
-
  • Parity-violating ee and ep scattering
  • could be used to test SM and probe new physics
  • MSSM contribution to QeW and QpW is 8 and 4 ? 1
    ?exp need higher exp precision to constrain SUSY
  • correlation between QeW and QpW
  • distinguish various new physics
  • distinguish various SUSY scenario
    whether dark matter is SUSY particle ?
  • SUSY contribution to NuTeV result
  • MSSM with R-parity wrong sign /small
  • negative gluino contribution
  • size constrained by other considerations
  • hard to explain NuTeV in RPV
  • SUSY is not responsible for the NuTeV deviation
  • other new physics ?
  • hadronic effects ?
Write a Comment
User Comments (0)
About PowerShow.com