Title: Probing Supersymmetry with Neutral Current Scattering Experiments
1Probing Supersymmetry with Neutral Current
Scattering Experiments
2 Sub-Z precision measurements
-
- neutral current scattering
- heavy quark physics
- CP violation, EDM
- Rare K-decay, CKM unitarity
- muon g-2
- lepton flavor violation
-
- polarized ee scattering (SLAC E158)
- polarized ep scattering (JLab Qweak)
- neutrino-nucleus scattering (NuTeV)
A. Kurylov, M. Ramsey-Musolf, SS
3 Outline
-
- motivation
- parity-violating electron scattering experiments
- radiative corrections to weak charge QW
- analysis of SUSY contributions to QW
- MSSM contributions
- RPV analysis
- distinguish various new physics / SUSY
- NuTeV experiment
- MSSM contributions
- RPV analysis
- conclusion
4Motivation
-
- high precision low energy experiment available
-
-
- - muon g-2 Mm? , ?new ? 2x10-9, ?exp lt 10-9
- ?-decay, ?-decay MmW , ?new ? 10-3, ?exp ? 10-3
- parity-violating electron scattering MmW , ?new
? 10-3, - 1/Qe,pW ?10 more sensitive to new physics
- need ?exp ? 10-2 easier experiment
- indirectdirect complementary information
- consistency test of theory at loop level
size of loop effects from new physics
(?/?)(M/Mnew)2
Qe,pW ? 1-4 sin2?W ? 0.1
- probe new physics off the Z-resonance
- - sensitive to new physics not mix with Z
5Test of sin2?W running
-
- sin2?W(0) - sin2?W(mZ2) 0.007
- QCsw agree Q20
- NuTeV 3? Q220 (GeV)2
- parity-violating electron
- scattering (PVES)
- ee Moller scattering (SLAC) QeW
- ep elastic scattering (J-lab) QpW
-
- clean environment Hydrogen target
- theoretically clean small hadronic
uncertainties - tree level ? 0.1 ? sensitive to new physics
6Goal
-
- minimal Supersymmetric extension of SM (MSSM)
- SUSY most promising candidate for new physics
- solution to Hierarchy problem
- gauge coupling unification
- provide a natural electroweak symmetry breaking
- dark matter candidate ? (PVES)
- with R-parity loop corrections
- without R-parity tree-level contribution
-
- low-energy precision measurements
- PVES weak charge QeW , QpW , ( QCsW ) - NuTeV
R?(?)
-
7Weak charge QW
-
geA Ie3
QCsW ? sin2?W 0.0021 NuTeV ? sin2?W
0.0016
8General structure of radiative corrections to QfW
-
Including radiative corrections
QfW ? (2If3 - 4 ? Qf s2) ?f
?, ? universal, ?f depend on fermion
species
? 1??SM??SUSY, ? 1??SM??SUSY, ?f
?fSM?fSUSY
?
9Radiative contributions
-
QfW ? (2If3 - 4 ? Qf s2) ?f
?
?f
10MSSM particle contents
-
Spin differ by 1/2
SM particle superpartner
mass parameter
??, tan?vu/vd
M3
M2
M1
11SUSY interactions
-
replace two SM particles into SUSY partners
? gauge coupling
?
?
? gauge coupling
?
? Yukawa coupling
12One loop SUSY contributions to PVES
-
- gauge boson
- self-energies
13Numerical analysis
-
- Model-independent analysis
- MSSM parameter range random scan
- hard to impose bounds on certain MSSM parameter
- show the possible range of MSSM corrections
- impose exp search limit on SUSY particles
- impose S-T 95 CL constraints
- impose g-2 constraints (2nd slepton LR mixing)
14Correction to weak charge
-
QfW ? (2Tf3 - 4Qf ? s2) ?f
dominant ?? (lt0) ? negative shift in sin2?W
? (QpW)SUSY / (QpW)SM lt 4, ? (QeW)SUSY / (QeW)SM
lt 8
15Dominant contributions
-
QfW ? (2Tf3 - 4Qf ? s2) ?f
- non-universal corrections
- vertex wavefunction cancel
- box diagrams numerically suppressed
- ?? contribution suppressed by (1-4 s2)
- dominant contribution from ??
?? (lt0) ? negative shift in sin2?W
16Various contributions to ??
-
S
- within ??
- various terms have comparable importance
- oblique approximation gives a poor description
T
- ?? lt0 (? (Qe,pW)SUSY / (Qe,pW)SM gt0 ) ?
reduction in effective sin2?W
17R-parity
-
- General MSSM, including B,L-violating operators
?ijk
?ijk
- dangerous ? introduce proton decay
- R-parity SM particle even superparticle odd
- stable LSP as dark matter candidate
- RPV only look at L-violating operator
18R-parity violating (RPV)
-
- RPV operators contribute to Qe,pW at tree level
- Exp constraints
- ? decay ?Vud -0.00145 ? 0.0007
- APV(Cs) ? QWCs -0.0040 ? 0.0066
- Re/? ? Re/? -0.0042 ? 0.0033
- G? ? G? 0.00025 ? 0.00188
?QpW
No SUSY dark matter
I) Obtain 95 CL allowed region in RPV
coefficients II) Evaluate ? QWe and ? QWp
G?
19Correlation between QpW and QeW
-
? ? QW(Z,N) / QW(Z,N) lt 0.2 for Cs
20Additional PV electron scattering ideas
-
Czarnecki, Marciano, Erler et al.
? N deep inelastic
sin2?W
APV
ee- LEP, SLD
SLAC E158 (ee)
JLab Q-Weak (ep)
??(GeV)
21NuTeV experiment
-
NC
CC
22Gluino contribution
-
negative gluino contribution
- CC data constraints
- Kurylov, Ramsey-Musolf,PRL88,071804,2002
- large LR-mixing
- both up/down sector
- inconsistent with current
- CC data
- constraints relaxed if first
- row CKM unitarity confirmed
- could partially account for
- deviation in sin2?W
unitarity deviation decrease by 1/3 ?
23Deviation of sin2?W
-
- extracted using Paschos-Wolfenstein relation
- in practice, modified version
- ? different from r
- ? charm quark mass
- uncertainties
- gluino contributions
- ? ? - r
1C 0C
mc constrained free
? 0.249 0.453
?sin2?W -1.6x10-3 -1x10-4
24R-parity violating (RPV)
-
-
- RPV operators contribute to R?(?) at tree level
- either wrong sign or too small
- hard to explain NuTeV deviation
25Conclusion
-
- Parity-violating ee and ep scattering
- could be used to test SM and probe new physics
- MSSM contribution to QeW and QpW is 8 and 4 ? 1
?exp need higher exp precision to constrain SUSY - correlation between QeW and QpW
- distinguish various new physics
- distinguish various SUSY scenario
whether dark matter is SUSY particle ?
- SUSY contribution to NuTeV result
- MSSM with R-parity wrong sign /small
- negative gluino contribution
- size constrained by other considerations
- hard to explain NuTeV in RPV
- SUSY is not responsible for the NuTeV deviation
- other new physics ?
- hadronic effects ?