Does the Love of Money Cause Pay Dissatisfaction? - PowerPoint PPT Presentation

1 / 52
About This Presentation
Title:

Does the Love of Money Cause Pay Dissatisfaction?

Description:

Does the Love of Money Cause Pay Dissatisfaction? Thomas Li-Ping Tang Middle Tennessee State University, the USA Fernando Arias-Galicia Universidad Autonoma del ... – PowerPoint PPT presentation

Number of Views:169
Avg rating:3.0/5.0
Slides: 53
Provided by: Author258
Category:

less

Transcript and Presenter's Notes

Title: Does the Love of Money Cause Pay Dissatisfaction?


1
Does the Love of Money Cause Pay Dissatisfaction?
  • Thomas Li-Ping Tang
  • Middle Tennessee State University, the USA
  • Fernando Arias-Galicia
  • Universidad Autonoma del Estado de Morelos,
    Mexico
  • Ilya Garger
  • Saratov State Social-Economic University, Russia
  • Theresa Li-Na Tang
  • Affinion Group, the USA
  • The 26th International Congress of Applied
    Psychology
  • Athens, Greece, July 16-21, 2006

2
  • TOTO SUTARSO, Middle Tennessee State University,
    USA,
  • ADEBOWALE AKANDE, International Institute of
    Research, South Africa,
  • MICHAEL W. ALLEN, Griffith University, Australia,
  • ABDULGAWI SALIM ALZUBAIDI, Sultan Qaboos
    University, Oman,
  • MAHFOOZ A. ANSARI, University Science Malaysia,
    Malaysia,
  • FERNANDO ARIAS-GALICIA, National University of
    Mexico, Mexico,
  • MARK G. BORG, University of Malta, Malta,
  • LUIGINA CANOVA, University of Padua,, Italy,
  • BRIGITTE CHARLES-PAUVERS, University of Nantes,
    France,
  • BOR-SHIUAN CHENG, National Taiwan University,
    Taiwan,
  • RANDY K. CHIU, Hong Kong Baptist University, Hong
    Kong,
  • IOANA CODOBAN, Babes-Bolyai University, Romania,
  • LINZHI DU, Nanjing University, China,
  • ILIA GARBER, Saratov State Social-Economic
    University, Russia,
  • CONSUELO GARCIA DE LA TORRE, Technological
    Institute of Monterrey, Mexico,
  • ROSARIO CORREIA HIGGS, Polytechnic Institute of
    Lisbon Portugal, Portugal,
  • CHIN-KANG JEN, National Sun-Yat-Sen University,
    Taiwan,
  • ALI MAHDI KAZEM, Sultan Qaboos University, Oman,
  • KILSUN KIM, Sogang University, South Korea,

3
  • VIVIEN KIM GEOK LIM, National University of
    Singapore, Singapore,
  • ROBERTO LUNA-AROCAS, University of Valencia,
    Spain,
  • EVA MALOVICS, University of Szeged, Hungary,
  • ANNA MARIA MANGANELLI, University of Padua,
    Italy,
  • ALICE S. MOREIRA, Federal University of Pará,
    Brazil,
  • ANTHONY UGOCHUKWU O. NNEDUM, Nnamdi Azikiwe
    University, Nigeria,
  • JOHNSTO E. OSAGIE, Florida A M University, USA,
  • FRANCISCO COSTA PEREIRA, Polytechnic Institute of
    Lisbon Portugal, Portugal,
  • RUJA PHOLSWARD, University of the Thai Chamber of
    Commerce, Thailand,
  • HORIA D. PITARIU, Babes-Bolyai University,
    Romania,
  • MARKO POLIC, University of Ljubljana, Slovenia,
  • ELISAVETA SARDZOSKA, University St. Cyril and
    Methodius, Macedonia,
  • PETAR SKOBIC, Middle Tennessee State University,
    Croatia,
  • ALLEN F. STEMBRIDGE, Southwestern Adventist
    University, USA,
  • THERESA LI-NA TANG, Cendant Marketing Group,
    Brentwood, TN, USA,
  • THOMPSON SIAN HIN TEO, National University of
    Singapore, Singapore,
  • MARCO TOMBOLANI, University of Padua, Italy,
  • MARTINA TRONTELJ, University of Ljubljana,
    Slovenia,
  • CAROLINE URBAIN, University of Nantes, France,

4
Outline
  • The Meaning of Money
  • The Love of Money Scale
  • The Pay Level Satisfaction Scale
  • Method
  • Results
  • Discussion, Implications, Limitations

5
Money
  • The instrument of commerce and the measure of
    value (Smith, 1776/1937).
  • Attract, retain, and motivate employees and
    achieve organizational goals (Chiu, Luk, Tang,
    2002 Milkovich Newman, 2005 Tang, Kim,
    Tang, 2000).

6
The Meaning of Money
  • is in the eye of the beholder (McClelland,
    1967, p. 10)
  • and can be used as the frame of reference
    (Tang, 1992) in which people examine their
    everyday lives (Tang Chiu, 2003 Tang,
    Luna-Arocas, Sutarso, 2005).

7
The Importance of Money
  • 10 Job Preferences, Pay was ranked (Jurgensen,
    1978)
  • No. 5 by Men
  • No. 7 by Women
  • 11 work goals, Pay was ranked (Harpaz, 1990).
  • No. 1 in Germany
  • No. 2 in Belgium, the UK, and the US

8
Why Do Students Go to College?
  • In 1971, 49.9 of freshman said They want to
    make more money.
  • In 1993, 75.1
  • (The American Freshman, 1994).

9
Major Cause of Dissatisfaction Among University
Students
  • The Lack of Money ?
  • 1981-1987 No. 2
  • 1990-1996 No. 3
  • 1997-2003 No. 1 (Bryan, 2004).

10
Pay Dissatisfaction
  • Has numerous undesirable consequences (Heneman
    Judge, 2000 77)
  • Turnover (Hom Griffeth, 1995 Tang, Kim,
    Tang, 2000),
  • Counterproductive Behavior (Cohen-Charash,
    Spector, 2001 Luna-Arocas Tang, 2004), and
  • Unethical Behavior (e.g., Chen Tang, 2006 Tang
    Chen, 2005 Tang Chiu, 2003).

11
The Love of Money ?Pay Level Satisfaction
  • Some Oldest References
  • Poverty consists, not in the decrease of ones
    possessions, but in the increase of ones greed
    (Plato, 427-347 BC).

12
Some Oldest References
  • Whoever loves money never has money enough
    whoever loves wealth is never satisfied with his
    income (Ecclesiastes, 5 10, New International
    Version).
  • The Love of Money ? Pay Level Satisfaction

13
Some Oldest References
  • People who want to get rich fall into temptation
    and a trap and into many foolish and harmful
    desires that plunge men into ruin and
    destruction. For the love of money is a root of
    all kinds of evil (Bible 1 Timothy, 6 9-10
    Tang Chiu, 2003).
  • ? The Love of Money Scale

14
The ABCs of Money Attitudes
  • Affective Do you love or hate money?
  • Behavioral What do you do with your money?
  • Cognitive What does money mean to you?

15
Money Is a Motivator ()
  • 4 Methods Improvement in Productivity
  • Participation 0
  • Job design 9
  • Goal setting 16
  • Contingent Pay 30
  • No other incentive or motivational technique
    comes even close to money (Locke, Feren,
    McCaleb, Shaw, Denny, 1980 381)
  • Money is a motivator (Stajkovic Luthans, 2001).
  • Money is NOT a motivator (Herzberg, 1987).

16
The Love of Money Scale
  • Factor 1 Rich (Affective)
  • 1. I want to be rich.
  • 2. It would be nice to be rich.
  • 3. Having a lot of money (being rich) is good.
  • Factor 2 Motivator (Behavior)
  • 4. I am motivated to work hard for money.
  • 5. Money reinforces me to work harder.
  • 6. I am highly motivated by money.
  • Factor 2 Importance (Cognitive)
  • 7. Money is good.
  • 8. Money is important.
  • 9. Money is valuable.

17
Pay Level Satisfaction
  • The 18-item-4-factor Pay Satisfaction
    Questionnaire (PSQ, Heneman and Schwab, 1985)
  • Pay, Bonus, Pay Raise, Administration
  • One of the most well-known multidimensional
    measures of Pay Satisfaction (e.g., Williams,
    McDaniel, Nguyen, 2006).

18
(No Transcript)
19
(No Transcript)
20
(No Transcript)
21
Measurement Invariance
  • It does little good to test a theoretical and
    conceptual relationship across cultures unless
    there is confidence that the measures
    operationalizing the constructs of that
    relationship exhibit both conceptual and
    measurement equivalence across the comparison
    groups (Riordan Vandenberg, 1994, p. 645).

22
Measurement Invariance 9 Steps
  1. an omnibus test of equality of covariance
    matrices across groups,
  2. a test of configural invariance,
  3. a test of metric invariance,
  4. a test of scalar invariance,
  5. a test of the null hypothesis that like items
    unique variances are invariant across groups,
  6. a test of the null hypothesis that factor
    variances were invariant across groups,
  7. a test of the null hypothesis that factor
    covariances were invariant across groups,
  8. a test of the null hypothesis of invariant factor
    means across groups, and
  9. other more specific test.

23
Measurement Invariance
  • Tests for configural and metric invariance were
    most often reported (Vandenberg and Lance (2000)
    p. 35).
  • Configural invariancefactor structures
  • Metric invariancefactor loadings

24
Method
Researchers collected data from 200 full-time
white-collar employees and managers in large
organizations. Translation-back translation The
Love of Money Scale The Pay Level Satisfaction
Scale
25
32 Samples, N 6,659
  • 1. Australia (n 262), 11. Hungry (100)
  • 2. Belgium (201), 12. Italy (204)
  • 3. Brazil (201), 13. Macedonia (204)
  • 4. Bulgaria (162), 14. Malaysia (200)
  • 5. China-1 (319 students), 15. Malta (200)
  • 6. China-2 (204 employees), 16. Mexico (295)
  • 7. Croatia (165), 17. Nigeria
  • 8. Egypt (200), 18. Oman
  • 9. France (135), 19. Peru
  • 10. Hong Kong (211), 20. Philippines (200)

26
32 Samples, N 6,659
  • 21. Portugal (200), 31. Thailand (202)
  • 22. Romania (200), 32. the USA (274)
  • 23. Russia (200),
  • 24. Singapore-1 (203),
  • 25. Singapore-2 (336),
  • 26. Slovenia (200),
  • 27. South Africa (211),
  • 28. South Korea (203),
  • 29. Spain (183),
  • 30. Taiwan (200),

27
Measurement Invariance 8 Steps
  • 1. Configural invariance (Factor Structures,
    Form)
  • ?2, df ,
  • TLI gt .95,
  • CFI gt .95,
  • SRMSR lt .08,
  • RMSEA lt .08 and
  • 2. Metric invariance (Factor Loadings, Unit)
  • chi-square change (??2/?df)
  • fit index change ?CFI

28
  • 3. Item-level metric invariance
  • The Z statistic for all pair-wise comparisons
    can be calculated from the parameter estimates,
    standard errors, and the asymptotic covariance
    matrix of the unconstrained model.
  • 4. First-order scalar invariance (Intercept,
    Origin)

29
  • 5. First-order latent mean comparison
  • 6. Second-order metric invariance
  • 7. Second-order scalar invariance
  • 8. Second-order latent mean comparison

30
(No Transcript)
31
(No Transcript)
32
(No Transcript)
33
(No Transcript)
34
(No Transcript)
35
  • Table 1. Major Variables of the Study across 29
    Geopolitical Entities
  • __________________________________________________
    __________________________________________________
    __
  • Sample N Age Sex Education
    Rich Motivator Important
    LOM Pay Level

  • ( Male) (Year) M SD M SD
    M SD M SD M SD
  • __________________________________________________
    __________________________________________________
    __
  • 1. Australia 262 26.81 29 12.50
    3.73 .81 3.23 .90 3.79 .73
    3.58 .66 3.14 .94
  • 2. Belgium 201 38.97 57 16.09
    3.40 .79 3.04 .84 3.68 .72
    3.37 .61 3.30 .85
  • 3. Brazil 201 37.71 45 16.92
    3.59 .91 3.05 .98 3.73 .81
    3.45 .63 2.68 .95
  • 4. Bulgaria 162 27.36 64 16.91
    3.92 .71 3.57 .85 3.82 .65
    3.78 .61 2.65 .84
  • 5. China 204 31.57 60 15.38
    3.69 .80 3.28 .85 3.79 .76
    3.59 .66 2.72 .81
  • 6. Egypt 200 40.26 50
    14.88 3.75 1.05 2.90 1.04 4.08
    .74 3.57 .70 3.37 1.08
  • 7. France 135 32.30 56 16.19
    3.79 .78 3.38 .92 3.61 .70
    3.59 .66 2.86 1.04
  • 8. HK 211 30.68 49 15.67 4.06
    .69 3.33 .90 4.07 .59
    3.82 .58 3.00 .83
  • 9. Hungary 100 34.06 55 15.96
    3.83 .73 3.55 .90 3.98 .71
    3.79 .67 3.05 1.08

36
  • Table 2. Configural Invariance of the
    9-Item-3-Factor Love of Money Scale (LOMS)
  • __________________________________________________
    __________________________
  • ?2 df p TLI
    CFI SRMSR RMSEA
  • __________________________________________________
    __________________________
  • 1. Australia 74.47 24 .00 .9874
    .9933 .0561 .0898
  • 2. Belgium 27.41 24 .29
    .9988 .9994 .0416 .0266
  • 3. Brazil 26.49 24 .33 .9992
    .9996 .0412 .0228
  • 4. Bulgaria 34.37 24 .08
    .9973 .9986 .0386 .0428
  • 5. China 34.82 24 .07
    .9965 .9981 .0337 .0471
  • 6. Egypt 29.64 24
    .20 .9979 .9989 .0369
    .0344
  • 7. France 37.98 24 .03
    .9929 .9962 .0480 .0659
  • 8. HK 46.43 24 .00 .9939
    .9968 .0437 .0667
  • 9. Hungary 107.09 24 .00 .9501
    .9734 .0760 .1870
  • 10. Italy 51.98 24 .00 .9905
    .9950 .0424 .0758
  • 11. Macedonia 60.84 24 .00 .9885
    .9939 .0518 .0870
  • 12. Malaysia 106.90 24 .00
    .9772 .9879 .0520 .1317
  • 13. Malta 445.66 24 .00
    .8931 .9430 .1197 .2971
  • 14. Mexico 79.35 24 .00 .9873
    .9932 .0506 .0886

37
  • Table 3 Summary of Fit Statistics
  • __________________________________________________
    __________________________________________________
    _________________________________________


  • Model
  • Model ?2 df p
    TLI CFI SRMSR RMSEA
    Comparison ??2 ?df ?CFI
  • __________________________________________________
    __________________________________________________
    _________________________________________
  • Step 1. Testing Measurement Invariance of
    Second-Order Factor Model of the Love of Money
  • Model 1 Configural invariance (see results for
    each geopolitical entity (sample) in Table 2)
  • Model 2 Construct-level metric invariance
  • A. Unconstrained
    615.95 408 .01
    .9960 .9979 .0416 .0123
  • B. Constrained (first-order factor
    loading) 982.98 504 .01
    .9926 .9951 .0478 .0168 2A
    vs. 2B 367.02 96 .0034
  • Model 3 Item-level metric invariance (Item 1
    constrained) 716.89 424 .01
    .9946 .9970 .0486 .0143 3
    vs. 2A 100.94 16 .0014
  • Model 4 Scalar invariance
    2835.35 648 .01 .9736
    .9776 .0488 .0317 4 vs. 2B
    1852.37 176 .0175
  • 2B intercepts of measured variables
    invariance
  • Model 5 First-order latent mean comparison

38
  • Table 3 Summary of Fit Statistics
  • __________________________________________________
    __________________________________________________
    ___________________________________


  • Model
  • Model ?2 df
    p TLI CFI SRMSR RMSEA
    Comparison ??2 ?df ?CFI
  • __________________________________________________
    __________________________________________________
    ___________________________________
  • Step 2 Testing Measurement Invariance of First
    -Order Factor Model of the Pay Level Satisfaction
  • Model 1 Configural invariance (see results for
    each geopolitical entity (sample) in Table 4)
  • Model 2 Construct-level metric invariance
  • A. Unconstrained
    19.73 18 .35 .9997 .9999
    .0030 .0067
  • B. Constrained (first-order
    factor loading) 89.46 42
    .01 .9959 .9981 .0113
    .0229 2A vs. 2B 69.73 24 .0018
  • Model 3 Item-level metric invariance (Item 1
    constrained) 49.01 26 .01
    .9968 .9991 .0032 .0203
    3 vs. 2A 29.28 8 .0010
  • Model 4 Scalar invariance 443.64
    74 .01 .9820 .9852
    .0147 .0482 4 vs. 2B 354.18
    32 .0129
  • 2B intercepts of measured variables
    invariance

39
  • Table 4 Configural Invariance of the
    4-Item-1-Factor Pay Level Satisfaction Scale
    (PLSS)
  • __________________________________________________
    __________________________
  • ?2
    df p TLI CFI
    SRMSR RMSEA
  • __________________________________________________
    __________________________
  • 1. Australia .31 2
    .86 1.0000 1.0000 .0030
    .0000
  • 2. Belgium 4.82 2 .00
    .9951 .9990 .0090
    .0839
  • 3. Brazil 2.25 2 .33
    .9994 .9999 .0104
    .0250
  • 4. Bulgaria 13.35 2 .00
    .9697 .9939 .0233
    .1878
  • 5. China 2.84 2 .24
    .9981 .9996 .0156
    .0455
  • 6. Egypt 5.06 2
    .08 .9925 .9985
    .0210 .0877
  • 7. France 13.23 2 .00
    .9681 .9936 .0169
    .2047
  • 8. HK 5.49 2 .06
    .9933 .9987 .0151
    .0912
  • 9. Hungary 11.46 2 .00
    .9657 .9931 .0140
    .2186
  • 10. Italy 13.11 2 .00
    .9793 .9959 .0191
    .1654
  • 11. Macedonia 13.52 2
    .00 .9722 .9944 .0382
    .1684
  • 12. Malaysia 17.00 2
    .00 .9717 .9943 .0207
    .1941

40
(No Transcript)
41
(No Transcript)
42
(No Transcript)
43
Implications--1
  • This study is an initial step in the measurement
    and functional invariance of the Love of Money
    Scale.
  • Using the most rigorous criteria, 17 samples (out
    of 29) pass the configural invariance.
  • Using a less rigorous criteria (RMSEA lt .10),
  • 25 samples pass the configural invariance test
  • 4 Samples fail Hungary, Malaysia, Malta,
    Nigeria.

44
Implications--2
  • Most samples fail the RMSEA (root mean square
    error of approximation) criterion that is
    sensitive to (1) sample size and (2) model
    complexity.
  • Most samples that fail have several ethnic groups
    (e.g., Nigeria has Igbo, Yoruba, Housa, and
    others, Malaysia has Chinese, Indian, Malays,
    Caucasian, and others)

45
Remedies Configural Invariance
  1. Increase sample size (gt 300)
  2. Use a simple model
  3. Analyze sub-samples using MGCFA
  4. Use EFA to identify the causes
  5. Revise the model
  6. One model does not fit all samples

46
Non-Metric Invariant Items
  • Four strategies (the unit of the measurement)
  • 1. Ignore the non-invariance because the
    comparison of data is not meaningful,
  • 2. Eliminate non-invariant items from the scale,
  • 3. Invoke partial metric invariance that allows
    the factor loading of non-invariant items to
    vary, and
  • 4. Interpret the source of non-invariance
    (Cheung, 2002).

47
Eliminate non-invariant items?
  • Not only metric non-invariance is desirable but
    also is a source of potentially interesting and
    valuable information about how different groups
    view the world (Cheung and Rensvold, 2002, p.
    252).

48
I Orientation
  • When the individual self is the center of the
    respondents psychological field for items of a
    scale (I want to be rich), people in
    individualistic cultures (Hofstede and Bond,
    1988 Yu and Yang, 1994) may have different
    perceptions than those in collectivistic cultures
    (Riordan and Vandenberg, 1994 Tang et al.,
    2002).

49
I Orientation
  • People in high collectivistic cultures (e.g.,
    China, South Korea) may consider I want to be
    rich not acceptable in their cultures
  • Researchers have to examine the wording or
    phrasing of items carefully when they design
    future measurement instruments (Riordan
    Vandenberg, 1994 667).

50
Limitations
  1. Translation equivalence
  2. Sample equivalence
  3. Common method biases
  4. Extraneous or nuisance variables (size or org.
    economy of the region, unemployment rate, etc.)
  5. Non-random samples, we cannot generalize the
    findings to the whole population with full
    confidence.

51
Final Thoughts and Conclusions
  • This study offers researchers some confidence and
    insights in using the Love of Money Scale.
  • When researchers and practitioners apply the same
    tools consistently across organizations and
    geopolitical entities overtime, the cumulative
    results will enhance our abilities to understand,
    predict, and control the role of the love of
    money in organizations.

52
Thank You
  • Danke
  • Dankeshen
  • Grazie
  • Merci
  • Muchas Gracias
  • ??
Write a Comment
User Comments (0)
About PowerShow.com