?????? FUZZY ASSOCIATIVE MEMMORIES? - PowerPoint PPT Presentation

1 / 25
About This Presentation
Title:

?????? FUZZY ASSOCIATIVE MEMMORIES?

Description:

FUZZY ASSOCIATIVE MEMMORIES ... (Product-Space Clustering in FAM Cells) 1.Adaptive FAM-Rule Generation 2.Adaptive BIOFAM Clustering 3.Adaptive BIOFAM Example: ... – PowerPoint PPT presentation

Number of Views:150
Avg rating:3.0/5.0
Slides: 26
Provided by: ybs2
Category:

less

Transcript and Presenter's Notes

Title: ?????? FUZZY ASSOCIATIVE MEMMORIES?


1
??????FUZZY ASSOCIATIVE MEMMORIES?
  • Presented by Yang Baisheng
  • E.E. Dept.
  • Xidian University

2
OUTLINE
  • Fuzzy Hebb FAMs(?)
  • 6.Binary Input-Output FAMs
  • 7. Multiantecedent FAM Rules
  • 8. Adaptive Decompositional Inference
  • Adaptive FAMs (Product-Space Clustering in FAM
    Cells)
  • 1.Adaptive FAM-Rule Generation
  • 2.Adaptive BIOFAM Clustering
  • 3.Adaptive BIOFAM Example
  • Inverted Pendulum

3
Binary Input-Output FAMs
  • BIOFAMs map system-variable to control,
    classification, or other output data.
  • For example
  • A BIOFAM maps traffic densities to screen
    (and red) light durations.
  • In inverted-pendulum example, the system
  • maps the system-variable (
    ) to control data ( ).

4
Multiantecedent FAM Rules (???FAM??)
  • 1.Consider the FAM rule IF X is A, THEN C is
    Z, or for short.
  • 2.The rule is IF X is A AND Y is B, THEN C is
    Z, or for short.

What to do?
5
Multiantecedent FAM Rules (???FAM??)
  • 2 Single-antecedent FAMs
  • Multiantecedent FAM Rules

Defuzzify it to yield the exact output.
6
Multiantecedent FAM Rules
  • Suppose we present the exact inputs , to
    the single-FAM-rule system that
    stores(A,BC).
  • We present the unit bit vectors and to
    as nonfuzzy set inputs.Then

Property of Hebb Matrix
7
Multiantecedent FAM Rules
  • Representing with its membership function
  • For all in

BIOFAM prescription
8
Multiantecedent FAM Rules
IF we encode and with
correlation-product encoding, decompositional
inference gives the BIOFAM version of
correlation-product inference
Correlation-Product Encoding
  • Also, We can get the FAM rules

9
Adaptive Decompositional Inference
  • Let define an arbitrary
    neural-network system that maps fuzzy subset
    of to fuzzy subsets of .
    can define a different
    neural-network.

The neural-network change with time.
10
Adaptive FAMs(Product-Space Clustering in FAM
Cells)
  • Adaptive FAM-Rule Generation
  • Adaptive BIOFAM Clustering
  • Adaptive BIOFAM Example
  • Inverted Pendulum

11
Adaptive FAM-Rule Generation
  • Let denote quantization
    vectors in the input-output product space
    .
  • We count the number of quantizing vectors in
    each FAM cell .

12
Adaptive BIOFAM Clustering
  • Through neural-network learning algorithm,
    learn to distribute input-output data in the
    input-output product space. Data clusters reflect
    FAM rules, such as the steady-state FAM rule IF
    is ZE AND is ZE, THEN is ZE.

13
BIOFAM?????????
???? ? ???? (????????)
?????? (????) ? ???? (????)
??????? ????, ????? ????, ?????????
?????, ??FAM??
??? DCLAVQ ??????
????? ??? ???? ??????, ?????????
????? ?? ????

14
Inverted Pendulum
  • 1????????????
  • ????????????
  • ??
  • ????????
  • ?????????????
  • 2?????
  • ???????MATLAB?????????????
  • 1000???????????????

15
Membership Function
16
FAM Bank Synaptic Histogram
17
FAM Rules
18
FAM Rules
  • ???
  • ???????????????-2.18?

19
??????
20
????
  • scope

21
FAM Rules
22
FAM Rules
23
REFERENCE
  • ??FAM???????????? ???,??? 2003.08
  • ??????????????????? ? ? 2004.09
  • ?????????? ???????? ???,???,??? 2000.11
  • ??ANN???????????????? ???,? ?,??? 1997.04

24
REFERENCE
  • ?BP???????????????????? ? ?,? ?,??? 1996.11
  • ??????????????????????? ??? 1997.08

25
THANKS!
Write a Comment
User Comments (0)
About PowerShow.com