Title: Fuzzy for Image Processing
1Fuzzy for Image Processing
- Penyusun
- Tri Nurwati
- (Dari berbagai sumber)
2Fuzzy Image Processing
- Fuzzy image processing is the collection of all
approaches that understand, represent and process
the images, their segments and features as fuzzy
sets. The representation and processing depend on
the selected fuzzy technique and on the problem
to be solved.(From Tizhoosh, Fuzzy Image
Processing, Springer, 1997)
3Struktur pengolahan citra dengan fuzzy
4Proses pembuatan fuzzy pada pengolahan citra
- Tidak seperti penggunakan logika fuzzy di suatu
plant, untuk pengolahan citra pembuatan fuzzy
melalui proses - coding of image data (fuzzification)
- the middle step (modification of membership
values - decoding of the results (defuzzification)
5Proses pembuatan fuzzy pada pengolahan citra
- Setelah data citra ditransformasikan dari level
gray ke dalam membership function
(fuzzification), dalam proses ini dibutuhkan
ketelitian dalam pengelompokan dan penentuan
nilai membership input dan output
6(No Transcript)
7Kelebihan pengolahan citra dengan menggunakan
logika fuzzy
- Teknik logika fuzzy sangat mumpuni dalam
pemrosesan/pengolahan dan representatif
pengetahuan (rule) - Teknik logika Fuzzy dapat mengatur keambiguan
(mirip) dan hal-hal yang relatif
8Kelebihan pengolahan citra dengan menggunakan
logika fuzzy
- Teori set fuzzy mempunyai kelebihan dapat
mempresentasikan dan memproses pengetahuan
pengguna dalam bentuk aturan it-then
9(No Transcript)
10Contohcolour yellow, orange, red, violet,
blue
11Contohwarna gray gelap, gray, dan terang
12Aplikasi
- Histogram-based gray-level fuzzification (or
briefly histogram fuzzification)contoh
Perbaikan ketajaman warna image (seperti gambar
panda di atas) - Local fuzzification (contoh deteksi tepi)
- Feature fuzzification (Scene analysis, object
recognition)
13Perbaikan Image dengan Fuzzy
- many researchers have applied the fuzzy set
theory to develop new techniques for contrast
improvement
14Langkah-langkah
- 1.1. Contrast Improvement with INT- Operator
- Langkah
- a.menentukan fungsi membership
- b.Mengubah nilai membership
- c.Membuat skala warna gray
151.2. Contrast Improvement using Fuzzy Expected
Value (Craig and Schneider 1992)
- 1. Step Calculate the image histogram
- 2. Step Determine the fuzzy expected value (FEV)
- 3. Step Calculate the distance of gray-levels
from FEV - 4. Step Generate new gray-levels
161.3. Contrast Improvement with Fuzzy Histogram
Hyperbolization (Tizhoosh 1995/1997)
- 1. Step Setting the shape of membership function
(regrading to the actual image) - 2. Step Setting the value of fuzzifier Beta (a
linguistic hedge) - 3. Step Calculation of membership values
- 4. Step Modification of the membership values by
linguistic hedge - 5. Step Generation of new gray-levels
-
171.4. Contrast Improvement based on Fuzzy If-Then
Ruels (Tizhoosh 1997)
- Step Setting the parameter of inference system
(input features, membership functions,..) - Step Fuzzification of the actual pixel
(memberships to the dark, gray and bright sets of
pixels) - .
181.4. Contrast Improvement based on Fuzzy If-Then
Ruels (Tizhoosh 1997)
- 3. Step Inference (e.g. if dark then darker, if
gray then gray, if bright then brighter) - 4. Step Defuzzification of the inference result
by the use of three singletons
191.5. Locally Adaptive Contrast Enhancement
(Tizhoosh et al. 1997)
- In many cases, the global fuzzy techniques fail
to deliver satisfactory results. Therefore, a
locally adaptive implementation is necessary to
achieve better results. See some examples and a
comparison with calssical approach.
20(No Transcript)
21(No Transcript)
22(No Transcript)
23(No Transcript)
24Deteksi Tepi
- Perbaiki dengan rumus di bawah
25Deteksi Tepi
26Contoh Hasil Deteksi Tepi
27Segmentasi Image dengan Fuzzy
28Segmentasi Image dengan Fuzzy
29(No Transcript)
30Contoh segmentasi