CPE 332 Computer Engineering Mathematics II - PowerPoint PPT Presentation

1 / 53
About This Presentation
Title:

CPE 332 Computer Engineering Mathematics II

Description:

CPE 332 Computer Engineering Mathematics II Part II, Chapter 4 Probability and Random Variable (Review) – PowerPoint PPT presentation

Number of Views:135
Avg rating:3.0/5.0
Slides: 54
Provided by: iLLU131
Category:

less

Transcript and Presenter's Notes

Title: CPE 332 Computer Engineering Mathematics II


1
CPE 332Computer Engineering Mathematics II
  • Part II, Chapter 4
  • Probability and Random Variable
  • (Review)

2
Today Topics
  • HW 3 Due
  • Probability
  • Random Variable
  • PDF
  • Expectation
  • Concept of Random Process

3
Definition
  • Outcome/Sample Point
  • ???????????????????????? ????????????????
  • Sample Space
  • Set ?????????????????
  • Event
  • ???????????????????
  • ????? Event A, ???????? N ?????
    ?????????????????????????????? A NA ?????

4
Example Dice Roll
  • Sample Space 1,2,3,4,5,6
  • P(1)P(2) P(6)1/6
  • Laplace Definition of Probability
  • ???????? Member ?? Sample Space
    ???????????????????
  • A Even
  • A 2,4,6
  • P(A) 2,4,6/S 3/6 ½

5
Mutually Exclusive
  • A ME B
  • ????????? Event A ?????? Event B ??????
  • ??????????????????????? ??????????????
  • ?????????? A Even, B Odd
  • A ME B
  • P(AB) or P(A union B) P(A) P(B)
  • ????????????????????? Vein Diagram

A
B
B
A
6
Mutually Exclusive
  • ME
  • A?B ?
  • A?BAB
  • P(A?B)P(A)P(B)

B
A
  • Non ME
  • A?B ??
  • A?BAB- A?B
  • Inclusion-Exclusion Principle

B
A
7
3 AXIOMS OF Probability
  • 1. P(S) 1
  • ???????????? ????????????????? Sample Space
  • 2. 0 lt P(A) lt 1
  • ?????? Probability ??????????????? 0 ??? 1
  • 3. ME P(AB)P(A)P(B)
  • Mutually Exclusive Probability ??? Union ???
    Event ??????????????? Probability ???????? Event

8
Conditional Probability
  • Probability ??? Event ????? ????????????? ???
    Event ????????????????
  • Probability ????????????? Event ?????????????
  • Probability ?????????????????? Event ????????????
  • ??????????????? Statistical Independent
  • ?????????

9
Bayes Rule
E1
E3
E6
A
E9
E4
E2
E7
E8
E5
10
Properties
11
Example 1
  • ????????????????? Digital ???? Frame ???? 50 ???
    ???????????????????????????????? Frame
    ????????????????? ?????????? Error
    ???????????????????(BER Bit Error Rate)
    ?????????????????????????? 1/1000 ??????? Frame
    ?????????? Error ???????????????????????? (FER
    Frame Error Rate) ?????????? Error ????? Bit ????
    Independent

12
Example 2
  • ???????? ?????????????????????????????????????
    CPE332 ???????????? 0.5 ??????????????????????????
    ?????????????????? 0.4 ??????? CPE332
    ???????????????????? 40 ????????????????? 25 ??
    ????????????????????????????????????
  • ???????????????????????????????
  • ??? Sample Space ?????????????????????(M)
    ???????????????(F) ??????? S M,F
  • ?????????? Set ??????????? ME ??? Sample Space
    ??? Partition ??????? Partition
  • PM40/65 ??? PF25/65
  • ??? Event A ?????????????????????????????????
    ??????
  • PA\M0.5 ??? PA\F0.4
  • ??????????? Partition

13
Example3
  • ????????????????? 2 ?????????????????????????????
    ??????????????? CPE332 ????????????????
    ???????????????????????????????????????
    ???????????????????????????????? ??????????
  • 1.????????????????????????????????????????????????
    ?
  • 2. Probability ???????????????????????????????????
    ?????
  • 1. ????????? PF\A
  • 2. ????????? PFAPF?A

14
Random Variables
  • ????????????????????????????????? Sample Point ??
    Sample Space ????????? Variable
    ??????????????????????????? ??????????????????????
    ??????????????? ??????????? Variable ???????????
    Random Variable ??????????????????????? Random
    Variable ?????????? Capital
  • ??????????? ???????? RV ??????????????????????????
    ??????????????????????????????
  • Mean
  • Variance
  • Etc.

15
Random Variables
  • ???????????????????????(Sample Space)??? Infinite
    Set ?????????????????????????????????????????
  • ?????? Continuous Random Variable
  • ???????????????? Finite Set ????????????? Set
    ????????? ????????? Integer
  • ?????? Discrete Random Variable
  • Probability ????????????????????????????? ???
    Probability ??? Random Variable
    ?????????????????????
  • ????????????????????????? RV ?????? Plot ???
    Probability(y-axis) ????????? Random
    Variable(x-axis)
  • Cumulative Distribution Function (CDF)
  • Probability Density Function (PDF)

16
CDFCumulative Distribution Function of RV X
FX(x)
1.0
FX (10) PX 10
x
x 10
CDF of Normal (Gaussian) Distribution Continuous
17
CDF Properties
18
CDF ???????????? Discrete RV
  • ??? ??? 0 ??? ???? 1

FX(x) P(X x)
1.0
0.5
0
x
1
0
19
CDF ????????????? Discrete RV
  • ??? ??????????????????????????

FX(x) P(X x)
1.0
0.5
0
x
20
PDF Probability Density Function
f(x)
Area ?f(x)dx 1
x
PDF of Normal(Gaussian) Distribution Continuous
21
Properties of PDF
22
Discrete Version
  • ?????? Variable ????????????
  • RV X ????????????? Xxi
  • F(x) P(Xx)
  • Function ????????????????????????????
  • ??????????????????? Domain ??? x
  • Function ???????????????????
  • Monotonic Increasing Function ??? 0 ??? 1
  • f(xi) P(X xi)
  • ????????????? ???????????? ???????????????????????
  • ?????????? Probability Mass Function
  • ?f(xi)1 ????

23
f(x)
PMF
x
F(x)
CDF
x
24
Statistical Average
25
Importance Expectation
26
  • Note
  • ????????? Data ????????????????????????
    ?????????????? Estimate ??? Mean ??? Mean Square
    ???????? ???

27
Joint Moment
28
Correlation
  • G(x,y) XY

29
Covarience
30
Correlation and Covarience
31
PDF ????????
PXx
PXltx
1.0
q
p
x
1
0
32
Binomial Distribution
b(k10,0.2)
b(k10,0.5)
33
Geometric Distribution
P0.5
P0.2
34
Uniform Distribution
f(x)
1/(b-a)
x
a
b
35
Gaussian Distribution
36
Gaussian
Area 1
37
Jointly Gaussian X, Y
38
P 0
Volumn 1
39
P 0.5
40
P 0.9
41
P 0.95
42
P -0.99
43
Exponential Distribution
44
Exponential Distribution
A 1
Area 1
45
Poisson Distribution
46
Lambda 1
47
Lambda 3
48
Lambda 5
49
Lambda 8
50
Lambda 12
51
Lambda 18
52
Random Process
  • ????? Random Variable ???? Function ???????
  • ????????????????? Random ???? Noise
  • ?????? Packet ?? Network
  • ???????????????????
  • ?????????????????????????????
  • ???????? ????????????????? ???????????????????????
    Random ????? PDF ????????????????
  • ?????????????? PDF ????????????
    ??????????????????????????
  • Random Variable ??????? Function (Random Function
    ???? Analytic Function) ??????? ???????? Random
    Process ???? Stochastic Process
  • ??? RV X ?????? X(t)
  • Mean ??? Variance ?????? Function ???????????
  • ????????????????????????? RV ?????????????????????
    ???????????????

53
Homework IV Due Next Week
  • Download ??? Web
  • Next Week Chapter V
  • Random Process
  • MarKov Process and MarKov Chain
Write a Comment
User Comments (0)
About PowerShow.com