CPE 332 Computer Engineering Mathematics II - PowerPoint PPT Presentation

About This Presentation
Title:

CPE 332 Computer Engineering Mathematics II

Description:

CPE 332 Computer Engineering Mathematics II Week 7 Part II, Chapter 6 Queuing Theory Today Topics Birth and Death Process Unlimited Server N Servers Single Server, M ... – PowerPoint PPT presentation

Number of Views:204
Avg rating:3.0/5.0
Slides: 60
Provided by: iLLUS189
Category:

less

Transcript and Presenter's Notes

Title: CPE 332 Computer Engineering Mathematics II


1
CPE 332Computer Engineering Mathematics II
  • Week 7
  • Part II, Chapter 6
  • Queuing Theory

2
Today Topics
  • Birth and Death Process
  • Unlimited Server
  • N Servers
  • Single Server, M/M/1
  • Kendal Notation
  • Applications

3
Queuing System
Departure Rate ?
Arrival Rate ?
System
Customer
Customer
4
Queuing System
Birth Rate
Death Rate
Departure Rate ?
Arrival Rate ?
System
Customer
Customer
5
Queuing System
Birth Rate
Death Rate
Departure Rate ?
Arrival Rate ?
System
Customer
Customer
6
Queuing System
? lt ?
Birth Rate
Death Rate
Departure Rate ?
Arrival Rate ?
System
Customer
Customer
7
Queuing System Case 1 Unlimited Server No Queue
? lt ?
Departure Rate ?
Arrival Rate ?
System
Customer
Customer
  1. ????????? Customer ???????????????????? Poisson
    ???????????? Service ????????????
  2. ??????????????? Service ???? Random ?????????????
    Exponential ?????????????? T
  3. ????????????? Customer ???????????
  4. ???????????? M/M/?

8
Queuing System Case 1 Unlimited Server No Queue
? lt ?
Departure Rate ?
Arrival Rate ?
System
Customer
Customer
  1. ????????? Customer ???????????????????? Poisson
    ???????????? Service ????????????
  2. ??????????????? Service ???? Random ?????????????
    Exponential ?????????????? T
  3. ????????????? Customer ???????????
    ?????????????????? ????????????
  4. ???????????? M/M/? ??????????? Simple Markov
    Model
  5. ????????????????????????? State Probability
    ???????????????? Poisson

0
1
2
i
j
?
9
Queuing System Case 2 Limited Server No Queue
? lt ?
Departure Rate ?
Arrival Rate ?
System
Customer
Customer
  1. ????????? Customer ???????????????????? Poisson
    ???????????? Service ????????????
  2. ??????????????? Service ???? Random ?????????????
    Exponential ?????????????? T
  3. ????????????? Customer ??? N ?????? Server ????
    ????? Customer ??????????
  4. ???????????? M/M/N/N ??????????? Simple Markov
    Model
  5. State Probability ???????????????? First Erlang
    (Erlang B) Distribution

0
1
2
i
j
N
10
Queuing System Case 3 Limited Server With Queue
? lt ?
Departure Rate ?
Arrival Rate ?
System
Customer
Customer
  1. ????????? Customer ???????????????????? Poisson
    ???????????? Service ????????????
  2. ??????????????? Service ???? Random ?????????????
    Exponential ?????????????? T
  3. ????????????? Customer ??????????? ????? Service
    ????????? N
  4. ?????? Server ???? Customer ?????????????? Queue
    ??????????????? Queuing Delay
  5. ???????????? M/M/N ???? M/M/N/? ???????????
    Simple Markov Model
  6. State Probability ???????????????? Second Erlang
    (Erlang C) Distribution

0
1
2
N
N1
?
11
Queuing System
Arrival Rate ?
Service R. ?
Queuing System
S
Customer
Customer
12
Queuing SystemSpecial Case M/M/1
Arrival Rate ?
Service R. ?
Queue
S
Customer
Customer
0
1
2
N
N1
?
13
Queuing System
Arrival Rate ?
Service R. ?
FIFO Queue
S
Customer
Customer
14
Queuing System
M/M/1 Queuing System
Service Rate ?1/Ts
Arrival Rate ?
S
Customer
Customer
Steady-State State probability is not change
15
M/M/1
?1/Ts
?
S
Arrival Poisson, ? Inter Arrival Exponential,
1/? Service Rate, ? Service Time, Ts (1/?)
Exponential Queue FIFO 1 Server
16
Queuing Model(1 Server) M/M/1
Queue 0, No Delay
Queue Delay
0
1
N1
N2
X
Server ????
Server Busy
1/Ts service rate For each server
arrival rate
17
??????????? M/M/1
No Q Delay Queue Empty
Delay Customer Wait in Q
Severe Delay Queue Overflow (Full) Congestion Pack
et Lost
18
??????????? Queuing Model (N Server) M/M/N
Queue 0, No Delay
Queue Delay
0
1
i
j
N
N1
N2
X
Server ????
i Server Busy
N Server Busy
1 Server Busy
1/h service rate For each server
A/harrival rate
Maximum Service Rate N/h
Service Rate at State k k/h
19
M/M/N
No Delay Queue Empty
Delay Customer Wait in Q
Severe Delay Queue Overflow (Full) Congestion
20
Network Model (M/M/1)
21
Network Model (M/M/1)
22
Network Model (M/M/1)
23
Network Model (M/M/1)
24
Network Model (M/M/1)
25
Network Model (M/M/1)
26
Network Model (M/M/1)
???????????? Model ???? M/M/1 ??????? Delay
?????????????? Delay ????????
27
Kendal Notation
28
Kendal Notation
29
Kendal Notation
30
Analysis
  • ??????????????? Queue ??????????????
  • ??? M/M/1 ????? Model ????? Port ??? Router (????
    Switch L3)
  • Arrival ???????? Packet ????????????????????????
    ??????????? pps
  • ??????? Packet ??????????????????
    ????????????????? Exponential
  • Service Time ???????? Packet ?????? Exponential
    ???? ????????????????????? Link Speed ??? Output
    Port
  • ??? Server Utilization ???????????????????
    Arrival Rate ??????? Service Rate
    ???????????????????? Server ?? Busy ?????? Link
    Utilization ??? Output Port ????

31
Queuing in Communication NW and M/M/1
Service Rate 1/Service Time
Arrival Rate
32
Example
  • Router ?????? Packet ?????? 8 pps
  • ?????????? Packet ?????????????? Exponential
    ????????????????? 500 Octet
  • Link ????????????? ?????????? 64 kbps
  • 1. Arrival Rate,? 8 pps
  • 2. ???????????????? Packet 4000 bit
  • 3. ???????? Link 64 k ??????? Service Time, Ts
    ???????? Packet 4000/64k 1/16
  • 4. Service Rate(?) 16 pps
  • 5. Server Utilization 8/16 0.5 50

33
Assumption
  • 1. ?????????? Packet ????????? ????????
    Independent ??? Random ?????????? Poisson
  • 2. ?????????? Packet ??????????????? Exponential
    ??????? Service Time ?????? Exponential ????
    ?????????????????????????????????
  • 3. ?? Output Link ????? ??????? Single Server
  • 4. ?????????? ????????? M/M/1

34
Utilization
  • Utilization ??????????????? Server ?? Busy
    ?????????????? Probability ??? Queue ??????
  • Probability ??? Q ????
  • ?? Network ?????? Probability ??? Output Link ??
    Busy ????

35
Arrival Rate
  • ????????? Arrival Rate ?????????????? Poisson
    ????????????? ?????????????????? Customer
    (Packet) ??????????????????? 1 ??????
  • Probability ??????? k customer (Packet)
    ???????????????? T ????????????????

36
Service Time
  • ???? Service Time ?????? ??? Service Rate
    ????????
  • ????????? Service Time ???? Random Variable
    ????????????????? Exponential ??????? Probability
    ??? Service Time ??????????????? T ??????

37
Queue Distribution
  • ???????????? Customer (State Probability)
    ????????????????? Probability ??? ???? ???? k
    Packet ??????????
  • ?????? p0 ??? Probability ??? ???? ??????
  • ??????? ??????
  • ???????? ???????????? Customer ?????? ???????
    State Probability ?????? Geometric Distribution

38
Queue Distribution
  • ??????
  • ???????? ???????????? Customer ?????? ???????
    State Probability ?????? Geometric Distribution
  • ?????? Geometric Distribution ????????? ????????
    Customer ?????? ???????? Packet ????????????
    ??????????

39
Queuing Delay
  • ??? ?????? ???????? Packet ????????? Customer
    ???????? ???? ??????????
  • ???????????????? Customer ???????? Queue ????????

40
Queuing Delay
  • ???????????? ????? Packet ???????? ???? ?????
    Queue ??????????
  • ???????? Packet ?????????????????????? Service
    ??????? ??? Queuing Delay ??????

41
System Delay
  • ???????? Packet ?????????????????????? Service
    ??????? ??? Queuing Delay ??????
  • ??????????????????????????????????????????????????
    ??????

42
Littles Theorem
  • ??? T ????????????????????????????????? ??? ?
    ???? Arrival Rate ????????????????????????????????
    ???????

43
???? M/M/1
44
???? M/M/1
45
???? M/M/1
46
M/M/1 Example 1
47
M/M/1 Example 1
48
M/M/1 Example 1
49
M/M/1 Example 1
50
M/M/1 Example 1
51
M/M/1 Example 2
52
M/M/1 Example 2
53
M/M/1 Example 3
54
M/M/1 Example 3
55
M/M/1 Example 3
56
Homework Chapter VI
  • Homework 6 ????????????????? ???????????? 29
    ??????? ?????????????????? ?????????? Web
    ???????? ???????????????????????????? ????????????

57
End of Week 7
  • Next Class Week 10
  • August 1416, 2013
  • MT Exam 5 August 2013 09.00-12.00 ??? 3 ???????
  • 6 ??? 60 ????? ???????? ???? 35
  • ????????????????????
  • ???????????????????? 15-20 ????????????

58
??????????? ???????? MT
59
MT Topics 6 ??? 6 ??
  • 1. Vector, Direction Cosine, Dot/Cross Product
    and Application in Geometry
  • 2. Matrix Determinant, Inverse
  • 3. Eigenvalue, Eigenvector, Diagonalization
  • 4. Conditional Probability, PDF and Expectation
  • 5. Auto/Cross Correlation, Markov Chain,
    Global/Detailed Balance Equation
  • 6. M/M/1 Queuing System
Write a Comment
User Comments (0)
About PowerShow.com