Title: CPE 332 Computer Engineering Mathematics II
1CPE 332Computer Engineering Mathematics II
- Week 7
- Part II, Chapter 6
- Queuing Theory
2Today Topics
- Birth and Death Process
- Unlimited Server
- N Servers
- Single Server, M/M/1
- Kendal Notation
- Applications
3Queuing System
Departure Rate ?
Arrival Rate ?
System
Customer
Customer
4Queuing System
Birth Rate
Death Rate
Departure Rate ?
Arrival Rate ?
System
Customer
Customer
5Queuing System
Birth Rate
Death Rate
Departure Rate ?
Arrival Rate ?
System
Customer
Customer
6Queuing System
? lt ?
Birth Rate
Death Rate
Departure Rate ?
Arrival Rate ?
System
Customer
Customer
7Queuing System Case 1 Unlimited Server No Queue
? lt ?
Departure Rate ?
Arrival Rate ?
System
Customer
Customer
- ????????? Customer ???????????????????? Poisson
???????????? Service ???????????? - ??????????????? Service ???? Random ?????????????
Exponential ?????????????? T - ????????????? Customer ???????????
- ???????????? M/M/?
8Queuing System Case 1 Unlimited Server No Queue
? lt ?
Departure Rate ?
Arrival Rate ?
System
Customer
Customer
- ????????? Customer ???????????????????? Poisson
???????????? Service ???????????? - ??????????????? Service ???? Random ?????????????
Exponential ?????????????? T - ????????????? Customer ???????????
?????????????????? ???????????? - ???????????? M/M/? ??????????? Simple Markov
Model - ????????????????????????? State Probability
???????????????? Poisson
0
1
2
i
j
?
9Queuing System Case 2 Limited Server No Queue
? lt ?
Departure Rate ?
Arrival Rate ?
System
Customer
Customer
- ????????? Customer ???????????????????? Poisson
???????????? Service ???????????? - ??????????????? Service ???? Random ?????????????
Exponential ?????????????? T - ????????????? Customer ??? N ?????? Server ????
????? Customer ?????????? - ???????????? M/M/N/N ??????????? Simple Markov
Model - State Probability ???????????????? First Erlang
(Erlang B) Distribution
0
1
2
i
j
N
10Queuing System Case 3 Limited Server With Queue
? lt ?
Departure Rate ?
Arrival Rate ?
System
Customer
Customer
- ????????? Customer ???????????????????? Poisson
???????????? Service ???????????? - ??????????????? Service ???? Random ?????????????
Exponential ?????????????? T - ????????????? Customer ??????????? ????? Service
????????? N - ?????? Server ???? Customer ?????????????? Queue
??????????????? Queuing Delay - ???????????? M/M/N ???? M/M/N/? ???????????
Simple Markov Model - State Probability ???????????????? Second Erlang
(Erlang C) Distribution
0
1
2
N
N1
?
11Queuing System
Arrival Rate ?
Service R. ?
Queuing System
S
Customer
Customer
12Queuing SystemSpecial Case M/M/1
Arrival Rate ?
Service R. ?
Queue
S
Customer
Customer
0
1
2
N
N1
?
13Queuing System
Arrival Rate ?
Service R. ?
FIFO Queue
S
Customer
Customer
14Queuing System
M/M/1 Queuing System
Service Rate ?1/Ts
Arrival Rate ?
S
Customer
Customer
Steady-State State probability is not change
15M/M/1
?1/Ts
?
S
Arrival Poisson, ? Inter Arrival Exponential,
1/? Service Rate, ? Service Time, Ts (1/?)
Exponential Queue FIFO 1 Server
16Queuing Model(1 Server) M/M/1
Queue 0, No Delay
Queue Delay
0
1
N1
N2
X
Server ????
Server Busy
1/Ts service rate For each server
arrival rate
17??????????? M/M/1
No Q Delay Queue Empty
Delay Customer Wait in Q
Severe Delay Queue Overflow (Full) Congestion Pack
et Lost
18??????????? Queuing Model (N Server) M/M/N
Queue 0, No Delay
Queue Delay
0
1
i
j
N
N1
N2
X
Server ????
i Server Busy
N Server Busy
1 Server Busy
1/h service rate For each server
A/harrival rate
Maximum Service Rate N/h
Service Rate at State k k/h
19M/M/N
No Delay Queue Empty
Delay Customer Wait in Q
Severe Delay Queue Overflow (Full) Congestion
20Network Model (M/M/1)
21Network Model (M/M/1)
22Network Model (M/M/1)
23Network Model (M/M/1)
24Network Model (M/M/1)
25Network Model (M/M/1)
26Network Model (M/M/1)
???????????? Model ???? M/M/1 ??????? Delay
?????????????? Delay ????????
27Kendal Notation
28Kendal Notation
29Kendal Notation
30Analysis
- ??????????????? Queue ??????????????
- ??? M/M/1 ????? Model ????? Port ??? Router (????
Switch L3) - Arrival ???????? Packet ????????????????????????
??????????? pps - ??????? Packet ??????????????????
????????????????? Exponential - Service Time ???????? Packet ?????? Exponential
???? ????????????????????? Link Speed ??? Output
Port - ??? Server Utilization ???????????????????
Arrival Rate ??????? Service Rate
???????????????????? Server ?? Busy ?????? Link
Utilization ??? Output Port ????
31Queuing in Communication NW and M/M/1
Service Rate 1/Service Time
Arrival Rate
32Example
- Router ?????? Packet ?????? 8 pps
- ?????????? Packet ?????????????? Exponential
????????????????? 500 Octet - Link ????????????? ?????????? 64 kbps
- 1. Arrival Rate,? 8 pps
- 2. ???????????????? Packet 4000 bit
- 3. ???????? Link 64 k ??????? Service Time, Ts
???????? Packet 4000/64k 1/16 - 4. Service Rate(?) 16 pps
- 5. Server Utilization 8/16 0.5 50
33Assumption
- 1. ?????????? Packet ????????? ????????
Independent ??? Random ?????????? Poisson - 2. ?????????? Packet ??????????????? Exponential
??????? Service Time ?????? Exponential ????
????????????????????????????????? - 3. ?? Output Link ????? ??????? Single Server
- 4. ?????????? ????????? M/M/1
34Utilization
- Utilization ??????????????? Server ?? Busy
?????????????? Probability ??? Queue ?????? - Probability ??? Q ????
- ?? Network ?????? Probability ??? Output Link ??
Busy ????
35Arrival Rate
- ????????? Arrival Rate ?????????????? Poisson
????????????? ?????????????????? Customer
(Packet) ??????????????????? 1 ?????? - Probability ??????? k customer (Packet)
???????????????? T ????????????????
36Service Time
- ???? Service Time ?????? ??? Service Rate
???????? - ????????? Service Time ???? Random Variable
????????????????? Exponential ??????? Probability
??? Service Time ??????????????? T ??????
37Queue Distribution
- ???????????? Customer (State Probability)
????????????????? Probability ??? ???? ???? k
Packet ?????????? - ?????? p0 ??? Probability ??? ???? ??????
- ??????? ??????
- ???????? ???????????? Customer ?????? ???????
State Probability ?????? Geometric Distribution
38Queue Distribution
- ??????
- ???????? ???????????? Customer ?????? ???????
State Probability ?????? Geometric Distribution - ?????? Geometric Distribution ????????? ????????
Customer ?????? ???????? Packet ????????????
??????????
39Queuing Delay
- ??? ?????? ???????? Packet ????????? Customer
???????? ???? ?????????? - ???????????????? Customer ???????? Queue ????????
40Queuing Delay
- ???????????? ????? Packet ???????? ???? ?????
Queue ?????????? - ???????? Packet ?????????????????????? Service
??????? ??? Queuing Delay ??????
41System Delay
- ???????? Packet ?????????????????????? Service
??????? ??? Queuing Delay ?????? - ??????????????????????????????????????????????????
??????
42Littles Theorem
- ??? T ????????????????????????????????? ??? ?
???? Arrival Rate ????????????????????????????????
???????
43???? M/M/1
44???? M/M/1
45???? M/M/1
46M/M/1 Example 1
47M/M/1 Example 1
48M/M/1 Example 1
49M/M/1 Example 1
50M/M/1 Example 1
51M/M/1 Example 2
52M/M/1 Example 2
53M/M/1 Example 3
54M/M/1 Example 3
55M/M/1 Example 3
56Homework Chapter VI
- Homework 6 ????????????????? ???????????? 29
??????? ?????????????????? ?????????? Web
???????? ???????????????????????????? ????????????
57End of Week 7
- Next Class Week 10
- August 1416, 2013
- MT Exam 5 August 2013 09.00-12.00 ??? 3 ???????
- 6 ??? 60 ????? ???????? ???? 35
- ????????????????????
- ???????????????????? 15-20 ????????????
58??????????? ???????? MT
59MT Topics 6 ??? 6 ??
- 1. Vector, Direction Cosine, Dot/Cross Product
and Application in Geometry - 2. Matrix Determinant, Inverse
- 3. Eigenvalue, Eigenvector, Diagonalization
- 4. Conditional Probability, PDF and Expectation
- 5. Auto/Cross Correlation, Markov Chain,
Global/Detailed Balance Equation - 6. M/M/1 Queuing System