New gaseous detectors: - PowerPoint PPT Presentation

About This Presentation
Title:

New gaseous detectors:

Description:

Title: Slide 1 Author: Harry van der Graaf Last modified by: Harry van der Graaf Created Date: 4/5/2004 1:18:21 PM Document presentation format: On-screen Show – PowerPoint PPT presentation

Number of Views:94
Avg rating:3.0/5.0
Slides: 42
Provided by: Harry148
Learn more at: http://www.hep.upenn.edu
Category:

less

Transcript and Presenter's Notes

Title: New gaseous detectors:


1
New gaseous detectors the application of pixel
sensors as direct anode
Harry van der Graaf NIKHEF, Amsterdam IEEE-NSS
Conference, Rome N17-4, Oct 19, 2004
NIKHEF Auke-Pieter Colijn Alessandro
Fornaini Harry van der Graaf Peter
Kluit Jan Timmermans Jan Visschers Maximilie
n Chefdeville Saclay CEA DAPNIA Paul
Colas Yannis Giomataris Arnaud
Giganon Univ. Twente/Mesa Jurriaan
Schmitz CERN/Medipix Constm Eric Heijne Xavie
Llopart Michael Campbell
Thanks to Wim Gotink Joop Rovenkamp
2
Original motivation Si pixel readout for the
Time Projection Chamber (TPC) at TESLA (now ILC)
3
Time Projection Chamber (TPC) 2D/3D Drift
Chamber The Ultimate Wire (drift) Chamber
track of charged particle
E-field (and B-field)
Wire plane
Wire Plane Readout Pads
Pad plane
4
Wireless wire chambers better granularity
1995 Giomataris Charpak MicroMegas
5
Wireless wire chambers better granularity
1996 F. Sauli Gas Electron Multiplier (GEM)
6
Problem With wires measure charge
distribution over cathode pads c.o.g. is a good
measure for track position With GEMs or
Micromegas narrow charge distribution (only
electron movement)
avalanche
GEM
wire
Micromegas
Cathode pads
Solutions - cover pads with resisitive layer -
Chevron pads - many small pads pixels
7
The MediPix2 pixel CMOS chip
Cathode foil
Drift Space
Gem foils
Support plate
Medipix 2
We apply the naked MediPix2 chip without X-ray
convertor!
8
MediPix2 Micromegas
55Fe
Cathode (drift) plane
Drift space 15 mm
Micromegas
Baseplate
MediPix2 pixel sensor Brass spacer block Printed
circuit board Aluminum base plate
Very strong E-field above (CMOS) MediPix!
9
(No Transcript)
10
(No Transcript)
11
(No Transcript)
12
14 mm
Signals from a 55Fe source (220 e- per photon)
300 ?m x 500 ?m clouds as expected
The Medipix CMOS chip faces an electric field of
350 V/50 µm 7 kV/mm !!
We always knew, but never saw the conversion of
55Fe quanta in Ar gas
13
Single electron efficiency
  • no attachment
  • homogeneous field in
  • avalanche gap
  • low gas gain
  • ?
  • No Curran or Polya
  • distributions but simply

Prob(n) 1/G . e-n/G
Eff e-Thr/G
Thr threshold setting (e-) G Gas amplification
14
New trial NIKHEF, March 30 April 2,
2004 Essential try to see single electrons from
cosmic muons (MIPs) Pixel preamp threshold 3000
e- Required gain 5000 10.000 New Medipix New
Micromegas Gas He/Isobutane 80/20 Ar/Isobutane
80/20 He/CF4 80/20 It Works!
15
He/Isobutane 80/20 Modified MediPix
Sensitive area 14 x 14 x 15 mm3
Drift direction Vertical max 15 mm
16
He/Isobutane 80/20 Modified MediPix
17
He/Isobutane 80/20 Modified MediPix
18
He/Isobutane 80/20 Non Modified MediPix Americi
um Source
19
He/Isobutane 80/20 Modified MediPix
20
He/Isobutane 80/20 Modified MediPix
d-ray!
21
  • After 24 h cosmic ray data and 3 broken chips
  • We can reach very high gas gains with He-based
    gases (gt 100k!)
  • The MedPix2 chip can withstand strong E-fields
    (10 kV/mm!)
  • Discharges ruin the chip immediately (broke 4 in
    4 days!)
  • Measured efficiency gt 0.9 consistent with high
    gain
  • Seen MIPs, clusters, d-rays, electrons, a s
  • - In winter 2004 beam tests (dE/dX e-, pions,
    muons,),
  • X-rays (ESRF, Grenoble)
  • - Development of TimePix 1 TDC per pixel instead
    of counter

22
Integrate GEM/Micromegas and pixel sensor InGrid
GEM
Micromegas
Monolitic detector by wafer post processing
23
InGrid
By wafer post processing at MESA, Univ. of
Twente
24
(No Transcript)
25
(No Transcript)
26
(No Transcript)
27
HV breakdowns
1) High-resistive layer
3) massive pads
2) High-resistive layer
4) Protection Network
28
Other application GOSSIP tracker for intense
radiation environment Vertex detector for SLHC
29
An thin TPC as vertex detector
GOSSIP Gas On Slimmed SIlicon Pixels
30
  • Essentials of GOSSIP
  • Generate charge signal in gas instead of Si
    (e-/ions versus e-/holes)
  • Amplify electrons in gas (electron avalanche
    versus FET preamps)
  • Then
  • No radiation damage in depletion layer or pixel
    preamp FETs
  • No power dissipation of preamps
  • No detector bias current
  • Ultralight detection layer (Si foil 1 mm Ar
    gas)
  • 1 mm gas layer 20 µm gain gap CMOS (almost
    digital!) chip
  • After all it is a TPC with 1 mm drift length
    (parallax error!)

Max. drift length 1 mm Max. drift time 16
ns Resolution 0.1 mm ? 1.6 ns
31
Ageing Power dissipation Material budget Rate
effects Radiation hardness Efficiency Position
resolution
32
Ageing
Remember the MSGCs
  • Little ageing
  • the ratio (anode surface)/(gas volume) is very
    high w.r.t. wire chambers
  • little gas gain 5 k for GOSSIP, 20 200 k for
    wire chambers
  • homogeneous drift field homogeneous
    multiplication field
  • versus 1/R field of wire. Absence of high
    E-field close to a wire
  • no high electron energy little production of
    chemical radicals
  • Confirmed by measurements (Alfonsi, Colas)
  • But critical issue ageing studies can not be
    much accelerated!

33
Power dissipation
  • For GOSSIP CMOS Pixel chip
  • Per pixel
  • - input stage (1.8 µA/pixel)
  • (timing) logic
  • Futher data transfer logic
  • guess 0.1 W/cm2
  • ? Gas Cooling feasible!

34
Detector Material budget
Slimmed Si CMOS chip 30 µm Si Pixel resistive
layer 1 µm SU8 eq. Anode pads 1 µm
Al Grid 1 µm Al Grid resistive layer 5 µm
SU8 eq. Cathode 1 µm Al
35
Rate effects
SLHC _at_ 2 cm from beam pipe 10 tracks cm-2 25
ns-1 400 MHz cm-2!
  • 10 e- per track (average)
  • gas gain 5 k
  • most ions are discharged at grid
  • after traveling time of 20 ns
  • a few percent enter the drift space

time
  • Some ions crossing drift space takes 20 200
    µs!
  • ion space charge has NO effect on gas gain
  • ion charge may influence drift field, but this
    does little harm
  • ion charge may influence drift direction change
    in lorentz angle 0.1 rad
  • B-field should help

36
Efficiency
  • Determined by gas layer thickness and gas
    mixture
  • Number of clusters per mm 3 (Ar) 10
    (Isobutane)
  • Number of electrons per cluster 3 (Ar) - 15
    (Isobutane)
  • Probability to have min. 1 cluster in 1 mm Ar
    0.95
  • With nice gas eff 0.99 in 1 mm thick layer
    should be possible
  • But.
  • Parallax error due to 1 mm thick layer, with 3rd
    coordinate 0.1 mm
  • TPC/ max drift time 16 ns s 0.1 mm s 1.6
    ns feasible!
  • Lorentz angle
  • We want fast drifting ions (rate effect)
  • little UV photon induced avalanches good
    quenching gas

37
Position resolution
  • Transversal coordinates limited by
  • Diffusion single electron diffusion 0 40/70
    µm
  • weighed fit ava 20/30 µm
  • 10 e- per track s 8/10 µm
  • pixel dimensions 20 x 20 50 x 50 µm2
  • Note we MUST have sq. pixels no strips (pad
    capacity/noise)
  • Good resolution in non-bending plane!
  • Pixel number has NO cost consequence (m2 Si
    counts)
  • Pixel number has some effect on CMOS power
    dissipation
  • d-rays can be recognised eliminated
  • 3rd (drift) coordinate
  • limited by
  • Pulse height fluctuation
  • gas gain (5 k), pad capacity, e- per cluster
  • With Time Over Threshold s 1 ns 0.1 mm

38
Radiation hardness
  • Gas is refreshed no damage
  • CMOS 130 nm technology TID
  • NIEL
  • SEU design/test
  • need only modest pixel input stage

39
  • Gas instead of Si
  • Pro
  • no radiation damage in sensor
  • modest pixel input circuitry
  • no bias current, no dark current (in absence of
    HV breakdowns..!)
  • requires (almost) only digital CMOS readout chip
  • low detector material budget
  • low power dissipation
  • (12) CMOS wafer ? Wafer Post Processing
  • no bump bonding
  • simple assembly
  • operates at room temperature
  • less sensitive for X-ray background
  • 3D track info per layer
  • Con
  • Gas chamber ageing not known at this stage
  • Needs gas flow (but can be used for cooling.)

40
  • Plans
  • InGrid 1 available for tests in November
  • rate effects
  • ageing (start of test test takes years)
  • ? Proof-of-principle of signal
    generator Xmas 2004!
  • InGrid 2 HV breakdowns, beamtests with MediPix
    (TimePix1 in 2005)
  • Gossipo Multi Project Wafer test chip

Dummy wafer
41
New gaseous detectors the application of pixel
sensors as direct anode
Harry van der Graaf NIKHEF, Amsterdam IEEE-NSS
Conference, Rome N17-4, Oct 19, 2004
NIKHEF Auke-Pieter Colijn Alessandro
Fornaini Harry van der Graaf Peter
Kluit Jan Timmermans Jan Visschers Maximilie
n Chefdeville Saclay CEA DAPNIA Paul
Colas Yannis Giomataris Arnaud
Giganon Univ. Twente/Mesa Jurriaan
Schmitz CERN/Medipix Constm Eric Heijne Xavie
Llopart Michael Campbell
Thanks to Wim Gotink Joop Rovenkamp
Write a Comment
User Comments (0)
About PowerShow.com