Title: UNAM
1UNAM
Dr. Leonid Fridman
NEW TRENDS IN SLIDING CONTROL MODE
L. Fridman Universidad Nacional Autónoma de
México División de Posgrado, Facultad de en
Ingeniería Edificio A, Ciudad
Universitaria C.P. 70-256, México D.
F. lfridman_at_verona.fi-p.unam.mx 14 MAYO DE 2004
2UNAM
Dr. Leonid Fridman
Intuitive theory of Sliding mode control
3UNAM
Dr. Leonid Fridman
Intuitive theory of Sliding mode control
4UNAM
Dr. Leonid Fridman
Intuitive theory of Sliding mode control
Motivations
- Given a system
- Problem formulation Design control function u to
provide asymptotic stability - in presence of bounded uncertain term
, that contains model uncertainties and
external disturbances.
f(x,t)
u
x
0
5UNAM
Dr. Leonid Fridman
Intuitive theory of Sliding mode control
Basics of Sliding Mode Control
- Desired compensated error dynamics (sliding
surface) - The purpose of the Sliding Mode Controller (SMC)
is to drive a system's trajectory to a
user-chosen surface, named - sliding surface, and to maintain the plant's
state trajectory on this surface thereafter. The
motion of the system on the sliding surface is
named - sliding mode. The equation of the sliding surface
must be selected such that the system will
exhibit the desired (given) behavior in the
sliding mode that will not depend on unwanted
parameters (plant uncertainties and external
disturbances).
6UNAM
Dr. Leonid Fridman
Intuitive theory of Sliding mode control
x
1. Sliding surface design
2
reaching phase
x(0)
x
1
sliding phase
2. SMC design
Sliding mode existence condition
Equivalent control
7UNAM
Dr. Leonid Fridman
Intuitive theory of Sliding mode control
More than Robustness- (insensitivity!!!!) to
disturbances and uncertainties
WHY Sliding mode control?
WHEN Sliding mode control?
Control plants that operate in presence
of unmodeled dynamics, parametric
uncertainties and severe external disturbances
and noise aerospace vehicles, robots, etc.
8UNAM
Dr. Leonid Fridman
Intuitive theory of Sliding mode control
Numerical example
Features 1. Invariance to disturbance 2. High
frequency switching
9UNAM
Dr. Leonid Fridman
Intuitive theory of Sliding mode control
Continuous and smooth sliding mode control
1. Continuous approximation via saturation
function
sign s
sat(s/e)
1
s
s
e
-1
Numerical example
10UNAM
Dr. Leonid Fridman
Intuitive theory of Sliding mode control
Simulations
Features 1. Invariance to disturbance is lost to
some extend 2. Continuous asymptotic control
11UNAM
Dr. Leonid Fridman
Second order Sliding mode control
1. Twisting Algorithm
Features 1.Convergence in finite time for
and 2.Robustness INSENSITIVITY!!!! 3.Convergence
12UNAM
Dr. Leonid Fridman
New trends in sliding mode control
Chattering avoidance whit Twisting Algorithm
(continuous control)
Features 1.Convergence in finite time for
and 2.Robustness 3.Convergence
13UNAM
Dr. Leonid Fridman
Continuous Second order Sliding mode control
2. Super Twisting Algorithm
Features 1. Invariance to disturbance 2.
Continuous control
14UNAM
Dr. Leonid Fridman
Sliding mode observers/differentiators
3. Second Order ROBUST TO NOISE Sliding Mode
Observer
15UNAM
Dr. Leonid Fridman
Higher order Sliding mode control
4. High order slides modes controllers of
arbitrary order
Features 1.Convergence in finite time
for 2.Robustness 3.Convergence 4.r-Smooth
control
16UNAM
Dr. Leonid Fridman
Higher order Sliding mode control
High order slides modes controllers of arbitrary
order
17UNAM
Dr. Leonid Fridman
CHATTERING ANALISYS
- Frecuency Methods modifications. Boiko,
Castellanos LF IEEE TAC2004 - Universal Chattering Test. Boiko, Iriarte,
Pisano, Usai, LF - Chattering Shaping. Boiko, Iriarte, Pisano, Usac,
LF
Frequency analysis
18UNAM
Dr. Leonid Fridman
CHATTERING ANALISYS
Singularly Perturbed Approach
Integral Manifold Averaging
LF IEEE TAC 2001 LF IEEE TAC 2002
Second Order Sliding Mode Controllers
19UNAM
Dr. Leonid Fridman
UNDERACTUATED SYSTEMS
SMC H_8 Fernando Castaños LF SMC Optimal
multimodel Poznyak, Bejarano LF
20UNAM
Dr. Leonid Fridman
OBSERVATION IDENTIFICATION VIA 2 -SMC
- Uncertainty identification
- Parameter identification
- Identification of the time variant parameters
- J. Dávila LF
21UNAM
Dr. Leonid Fridman
RELAY DELAYED CONTROL
Countable set of periodic solutionssliding modes
Shustin, E. Fridman LF 93
Set of Steady modes
22UNAM
Dr. Leonid Fridman
CONTROL OF OSCILLATIONS AMPLITUDE
Only
Is accessible FFS 93------ s(t-1) is
accessible Strygin, Polyakov, LF IJC 03, IJRNC
04
23UNAM
Dr. Leonid Fridman
APPLICATIONS
- Investigation and implementation of 2-SMC
- Shaping of Chattering parameters