Chapter 4.1 Notes: Apply Triangle Sum Properties - PowerPoint PPT Presentation

1 / 39
About This Presentation
Title:

Chapter 4.1 Notes: Apply Triangle Sum Properties

Description:

Lessons 4.1 and 4.2 Triangle Sum Properties & Properties of Isosceles Triangles-Classify triangles and find measures of their angles. - Discover the properties of ... – PowerPoint PPT presentation

Number of Views:248
Avg rating:3.0/5.0
Slides: 40
Provided by: Gaj1
Category:

less

Transcript and Presenter's Notes

Title: Chapter 4.1 Notes: Apply Triangle Sum Properties


1
Lessons 4.1 and 4.2 Triangle Sum Properties
Properties of Isosceles Triangles -Classify
triangles and find measures of their angles. -
Discover the properties of Isosceles Triangles.
HOMEWORK Lesson 4.1/1-9 and 4.2/1-10
2
Warm-Up
  • Name 2 pair of alternate interior angles
  • lt5 lt3 and lt4 lt1
  • 2. What is the sum of mlt1 mlt2 mlt3?
  • 180
  • If mlt4 65 and mlt5 50, what is mlt2?
  • 65

4. Find all the angle measures
50
140
3
Classification By Sides
Classification By Angles
4
Classifying Triangles
  • In classifying triangles, be as specific as
    possible.

Obtuse, Isosceles
Acute, Scalene
5
Triangle Sum Theorem NEW
  • The sum of the measures of the interior angles of
    a triangle is 180o.

mlt1 mlt2 mlt3 180
6
Property of triangles
  • The sum of all the angles
  • equals 180º degrees.

60º
90º
30º

60º
180º
30º
90º
7
Property of triangles
  • The sum of all the angles
  • equals 180º degrees.

40º
90º
40º
50º

180º
50º
90º
8
Property of triangles
  • The sum of all the angles
  • equals 180º degrees.

60º
60º
60º
60º

180º
60º
60º
9
What is the missing angle?
70º
70º
?
?

180º
70º
70º
180 140 40
10
What is the missing angle?
90º
?
30º
?

180º
90º
30º
180 120 60
11
What is the missing angle?
?
60º
60º
?

60º
60º
180º
189 120 60
12
What is the missing angle?
?
30º
78º
?

78º
30º
180º
180 108 72
13
Find all the angle measures
180 35x 45x 10x
180 90x
2 x
90, 70, 20
14
What can we find out?
  • The ladder is leaning on the ground at a 75º
    angle. At what angle is the top of the ladder
    touching the building?

180 75 90 x
180 165 x
15 x
15
Corollary to Triangle Sum Theorem
  • A corollary is a statement that readily follows
    from a theorem.

The acute angles of a right triangle are
complementary.
m?A m?B 90o
16
Find the missing angles.
  • The tiled staircase shown below forms a right
    triangle.
  • The measure of one acute angle in the triangle is
    twice the measure of the other angle.
  • Find the measure of each acute angle.

Cont
17
Find the missing angles.
SOLUTION
2x x 90
3x 90
x 30
2x 60
18
Find the missing angles.
2x (x 6) 90
2x 2(32) 64
3x 6 90
3x 96
(x 6) 32 6 26
x 32
19
Isosceles Triangle at least two sides have the
same length
5 m
5 m
5 m
9 in
9 in
3 miles
3 miles
4 miles
4 in
20
Properties of an Isosceles Triangle
  • Has at least 2 equal sides
  • Has 2 equal angles
  • Has 1 line of symmetry

21
Parts of an Isosceles Triangle
The vertex angle is the angle between two
congruent sides
22
Parts of an Isosceles Triangle
The base angles are the angles opposite the
congruent sides
23
Parts of an Isosceles Triangle
The base is the side opposite the vertex angle
24
Isosceles Triangle Conjecture If a triangle is
isosceles, then base angles are congruent.
25
Converse of Isosceles Triangle Conjecture If a
triangle has two congruent angles, then it is an
isosceles triangle.
26
Equilateral Triangle Triangle with all three
sides are congruent
7 ft
7 ft
7 ft
27
Equilateral Triangle Conjecture An equilateral
triangle is equiangular, and an equiangular
triangle is equilateral.
28
Find the missing angle measures.
lt68 and lt a are base angles ? they are congruent
 
b
m?a
68
Triangle sum to find ltb
mltb 180 68 - 68
mltb 180 -136
m?b
44
68
a
29
Find the missing angle measures.
ltc ltd are base angles and are congruent
Triangle sum 180 180 119 c d 180 119
c d 61 c d
 
ltc ½ (61) 30.5 ltd ½ (61) 30.5
m?c m?d
30.5
119
30.5
c
d
30
Find the missing angle measures.
E
EFG is an equilateral triangle ltE ltF ltG 180
/3 60
 
m?E m?F m?G
60
60
G
F
60
31
Find the missing angle measures.
Find m?G.
?GHJ is isosceles lt G lt J
 
x 44 3x 44 2x
x 22
Thus mltG 22 44 66 And mltJ 3(22) 66
32
Find the missing angle measures.
Find m?N
Base angles are
6y 8y 16 -2y -16 y 8
Thus mltN 6(8) 48. mltP 8(8) 16 48
33
Find the missing angle measures.
Using Properties of Equilateral Triangles
Find the value of x.
?LKM is equilateral mltK mltL mltM
 
180/3 60
2x 32 60 2x 37 x 18.5
34
Find the missing side measures.
Using Properties of Equilateral Triangles
Find the value of y.
 
?NPO is equiangular ?NPO is also equilateral.
ft
ft
5y 6 4y 12 y 6 12 y 18
Side NO 5(18) 6 90ft
35
Find the missing angle measures.
Using the symbols describing shapes answer the
following questions
Equilateral triangle all angles are equal
Isosceles triangle Two angles are equal
Right-angled triangle
c 180 3 60o
a 36o
d 180 (45 90) 45o
b 180 (2 36) 108o
36
Find the missing angle measures.
Kite - Made up of 2 isosceles triangles
p 36o
q 180 (2 36) 108o
56 (r s) 180o
(r s) 180 56 124
Because r s
r s 124 2 62o
37
Find the missing angle measures.
A
D
B
C
A
B
C
Equilateral triangle
e f g 60o
c d
a 64o
c d 180 - 72
b 180 (2 64o ) 52o
h i
D
c d 108
h i 180 - 90
c d 54o
h i 90
h i 45o
38
p 50o
q 180 (2 50o ) 80o
r q 80o
vertical angles are equal
Therefore s t p 50o
39
Find the missing angle measures.
Properties of Triangles
p q r 60o
a b c 60o
d 180 60 120o
s t 180 - 43 68.5o 2
e 18 a 60
exterior angle sum of remote interior angles
e 60 18 42o
40
Find the missing angle measures.
  1. Find the value of x
  2. Find the value of y
  • x is a base angle
  • 180 x x 50
  • 130 2x
  • x 65

2) y z are remote interior angles and base
angles of an isosceles triangle Therefore y z
x and y z y z 80 y 40
41
Find the missing angle measures.
  1. Find the value of x
  2. Find the value of y

1) ?CDE is equilateral All angles 60 Using
Linear Pair ltBCD 70 x is the vertex angle x
180 70 70 x 40
70
60
2) y is the vertex angle
y 180 100 y 80
42
Homework
  • In your textbook
  • Lesson 4.1/ 1-9 4.2/ 1-10
Write a Comment
User Comments (0)
About PowerShow.com