Title: Chapter 4.1 Notes: Apply Triangle Sum Properties
1Lessons 4.1 and 4.2 Triangle Sum Properties
Properties of Isosceles Triangles -Classify
triangles and find measures of their angles. -
Discover the properties of Isosceles Triangles.
HOMEWORK Lesson 4.1/1-9 and 4.2/1-10
2Warm-Up
- Name 2 pair of alternate interior angles
- lt5 lt3 and lt4 lt1
- 2. What is the sum of mlt1 mlt2 mlt3?
- 180
- If mlt4 65 and mlt5 50, what is mlt2?
- 65
4. Find all the angle measures
50
140
3Classification By Sides
Classification By Angles
4Classifying Triangles
- In classifying triangles, be as specific as
possible.
Obtuse, Isosceles
Acute, Scalene
5Triangle Sum Theorem NEW
- The sum of the measures of the interior angles of
a triangle is 180o.
mlt1 mlt2 mlt3 180
6Property of triangles
- The sum of all the angles
- equals 180º degrees.
60º
90º
30º
60º
180º
30º
90º
7Property of triangles
- The sum of all the angles
- equals 180º degrees.
40º
90º
40º
50º
180º
50º
90º
8Property of triangles
- The sum of all the angles
- equals 180º degrees.
60º
60º
60º
60º
180º
60º
60º
9What is the missing angle?
70º
70º
?
?
180º
70º
70º
180 140 40
10What is the missing angle?
90º
?
30º
?
180º
90º
30º
180 120 60
11What is the missing angle?
?
60º
60º
?
60º
60º
180º
189 120 60
12What is the missing angle?
?
30º
78º
?
78º
30º
180º
180 108 72
13Find all the angle measures
180 35x 45x 10x
180 90x
2 x
90, 70, 20
14What can we find out?
- The ladder is leaning on the ground at a 75º
angle. At what angle is the top of the ladder
touching the building?
180 75 90 x
180 165 x
15 x
15Corollary to Triangle Sum Theorem
- A corollary is a statement that readily follows
from a theorem.
The acute angles of a right triangle are
complementary.
m?A m?B 90o
16Find the missing angles.
- The tiled staircase shown below forms a right
triangle. - The measure of one acute angle in the triangle is
twice the measure of the other angle. - Find the measure of each acute angle.
Cont
17Find the missing angles.
SOLUTION
2x x 90
3x 90
x 30
2x 60
18Find the missing angles.
2x (x 6) 90
2x 2(32) 64
3x 6 90
3x 96
(x 6) 32 6 26
x 32
19Isosceles Triangle at least two sides have the
same length
5 m
5 m
5 m
9 in
9 in
3 miles
3 miles
4 miles
4 in
20Properties of an Isosceles Triangle
- Has at least 2 equal sides
- Has 2 equal angles
- Has 1 line of symmetry
21Parts of an Isosceles Triangle
The vertex angle is the angle between two
congruent sides
22Parts of an Isosceles Triangle
The base angles are the angles opposite the
congruent sides
23Parts of an Isosceles Triangle
The base is the side opposite the vertex angle
24Isosceles Triangle Conjecture If a triangle is
isosceles, then base angles are congruent.
25Converse of Isosceles Triangle Conjecture If a
triangle has two congruent angles, then it is an
isosceles triangle.
26Equilateral Triangle Triangle with all three
sides are congruent
7 ft
7 ft
7 ft
27Equilateral Triangle Conjecture An equilateral
triangle is equiangular, and an equiangular
triangle is equilateral.
28Find the missing angle measures.
lt68 and lt a are base angles ? they are congruent
b
m?a
68
Triangle sum to find ltb
mltb 180 68 - 68
mltb 180 -136
m?b
44
68
a
29Find the missing angle measures.
ltc ltd are base angles and are congruent
Triangle sum 180 180 119 c d 180 119
c d 61 c d
ltc ½ (61) 30.5 ltd ½ (61) 30.5
m?c m?d
30.5
119
30.5
c
d
30Find the missing angle measures.
E
EFG is an equilateral triangle ltE ltF ltG 180
/3 60
m?E m?F m?G
60
60
G
F
60
31Find the missing angle measures.
Find m?G.
?GHJ is isosceles lt G lt J
x 44 3x 44 2x
x 22
Thus mltG 22 44 66 And mltJ 3(22) 66
32Find the missing angle measures.
Find m?N
Base angles are
6y 8y 16 -2y -16 y 8
Thus mltN 6(8) 48. mltP 8(8) 16 48
33Find the missing angle measures.
Using Properties of Equilateral Triangles
Find the value of x.
?LKM is equilateral mltK mltL mltM
180/3 60
2x 32 60 2x 37 x 18.5
34Find the missing side measures.
Using Properties of Equilateral Triangles
Find the value of y.
?NPO is equiangular ?NPO is also equilateral.
ft
ft
5y 6 4y 12 y 6 12 y 18
Side NO 5(18) 6 90ft
35Find the missing angle measures.
Using the symbols describing shapes answer the
following questions
Equilateral triangle all angles are equal
Isosceles triangle Two angles are equal
Right-angled triangle
c 180 3 60o
a 36o
d 180 (45 90) 45o
b 180 (2 36) 108o
36Find the missing angle measures.
Kite - Made up of 2 isosceles triangles
p 36o
q 180 (2 36) 108o
56 (r s) 180o
(r s) 180 56 124
Because r s
r s 124 2 62o
37Find the missing angle measures.
A
D
B
C
A
B
C
Equilateral triangle
e f g 60o
c d
a 64o
c d 180 - 72
b 180 (2 64o ) 52o
h i
D
c d 108
h i 180 - 90
c d 54o
h i 90
h i 45o
38p 50o
q 180 (2 50o ) 80o
r q 80o
vertical angles are equal
Therefore s t p 50o
39Find the missing angle measures.
Properties of Triangles
p q r 60o
a b c 60o
d 180 60 120o
s t 180 - 43 68.5o 2
e 18 a 60
exterior angle sum of remote interior angles
e 60 18 42o
40Find the missing angle measures.
- Find the value of x
- Find the value of y
- x is a base angle
- 180 x x 50
- 130 2x
- x 65
2) y z are remote interior angles and base
angles of an isosceles triangle Therefore y z
x and y z y z 80 y 40
41Find the missing angle measures.
- Find the value of x
- Find the value of y
1) ?CDE is equilateral All angles 60 Using
Linear Pair ltBCD 70 x is the vertex angle x
180 70 70 x 40
70
60
2) y is the vertex angle
y 180 100 y 80
42Homework
- In your textbook
- Lesson 4.1/ 1-9 4.2/ 1-10