Computer Vision: Motion - PowerPoint PPT Presentation

1 / 34
About This Presentation
Title:

Computer Vision: Motion

Description:

Title: Computer Vision: Motion Author: Steve Seitz Last modified by: chen Created Date: 5/10/1998 5:20:27 PM Document presentation format: – PowerPoint PPT presentation

Number of Views:107
Avg rating:3.0/5.0
Slides: 35
Provided by: SteveS219
Category:

less

Transcript and Presenter's Notes

Title: Computer Vision: Motion


1
?????
2
????????????
  • ????????????????
  • ?????
  • ????????
  • ??????????
  • ???????? (mosaics)
  • 3??????
  • ??????

3
Optical flow???
????????????
??1 ??2
4
Optical Flow??
????
??
????
5
Optical flow??
6
Optical flow???
????????????
??1 ??2
7
????? optical flow
  • ?? H ???? I ?????????????????
  • ??????????????
  • H?????????I???????????????????????
  • ?????
  • ????? H?????I?????????
  • ?????????????????????
  • ???? ?????????
  • ???optical flow?????

8
Optical flow??? (grayscale images)
  • ??????????????????
  • ?????? Q ?????
  • ???? (u ? v ?1????)
  • I ???????(Taylor)????

9
Optical flow???
  • ????????????

10
Optical flow???
??????t????
?t??????????
????
11
Optical flow????
  • Q ???????????????????

???1 ???2
?????????????
  • ???????????????????
  • ???????????????????

????Aperture problem???
12
Aperture problem (?????????)
13
Aperture problem (???...)
14
Aperture problem (???...)
?????
??
??????
????
?????
????
??????
????
15
Aperture problem??????
  • ??????????????????
  • ??????? ?????????
  • ????????
  • ????????????????????????????????????????????????
  • ??????
  • ???????????????

16
Aperture problem??????
  • 5x5??????????????25??????????

17
RGB version
  • How to get more equations for a pixel?
  • Basic idea impose additional constraints
  • most common is to assume that the flow field is
    smooth locally
  • one method pretend the pixels neighbors have
    the same (u,v)
  • If we use a 5x5 window, that gives us 253
    equations per pixel!

18
Lukas-Kanade flow
  • ?? ????????????????

19
????????
  • ???Lucas-Kanade???????(u, v)????
  • ?????
  • ATA ?????????
  • ATA ????????
  • ATA ??????? l1? l2 ??????
  • ATA ???????
  • l1/ l2 ?????????(l1 ??????????)

20
ATA???????
  • ??????????????????????
  • ?????????????
  • ???? ????????????????
  • ATA??????????????
  • N ? ???????????
  • N ?0???????????????????
  • ATA??????????????????????

(x,y) ?????????????ATA??
21
Edge
  • large gradients, all the same
  • large l1, small l2

22
Low texture region
  • gradients have small magnitude
  • small l1, small l2

23
High textured region
  • gradients are different, large magnitudes
  • large l1, large l2

24
??
  • ???????????????????
  • ?????????????????????!
  • ??????????????????????????????????
  • ???????????????...

25
Lukas-Kanade???????
  • ?????????????????
  • ATA ?????????????
  • ??????????????????
  • ?????????
  • ????????
  • ???????????????
  • ????????
  • ??????????????????
  • window size??????
  • ???window size??

26
?????
  • ?????????????
  • ?????????
  • ??????????????????????????

??????????????????
  • ??????(Newtons method)???????
  • Also known as Newton-Raphson method
  • Lukas-Kanade ??????????????????????
  • ??????????????????????????

27
??????
  • ????Lukas-Kanade ??????
  • ???????Lucas-Kanade??????????????
  • ???????????????????image warping?????H??????????I?
    ??????????
  • ??????????(????????)??????

28
Revisiting the small motion assumption
  • Is this motion small enough?
  • Probably notits much larger than one pixel (2nd
    order terms dominate)
  • How might we solve this problem?

29
Reduce the resolution!
30
Coarse-to-fine optical flow estimation
31
Coarse-to-fine optical flow estimation
run iterative L-K
32
Multi-resolution Lucas Kanade Algorithm
33
Optical Flow Results
34
Optical Flow Results
Write a Comment
User Comments (0)
About PowerShow.com