Computer Vision (CSE P576) - PowerPoint PPT Presentation

About This Presentation
Title:

Computer Vision (CSE P576)

Description:

Computer Vision (CSE P576) Staff Prof: Steve Seitz (seitz_at_cs ) TA: Jiun-Hung Chen (jhchen_at_cs) Web Page http://www.cs.washington.edu/education/courses/csep576/05wi/ – PowerPoint PPT presentation

Number of Views:204
Avg rating:3.0/5.0
Slides: 36
Provided by: SteveS188
Category:
Tags: cse | computer | p576 | vision

less

Transcript and Presenter's Notes

Title: Computer Vision (CSE P576)


1
Computer Vision (CSE P576)
  • Staff
  • Prof Steve Seitz (seitz_at_cs )
  • TA Jiun-Hung Chen (jhchen_at_cs)
  • Web Page
  • http//www.cs.washington.edu/education/courses/cse
    p576/05wi/
  • Handouts
  • signup sheet
  • intro slides
  • image filtering slides
  • image sampling slides

2
Today
  • Intros
  • Computer vision overview
  • Course overview
  • Image processing
  • Readings for this week
  • Forsyth Ponce textbook, chapter 7

3
Every picture tells a story
  • Goal of computer vision is to write computer
    programs that can interpret images

4
Can computers match human perception?
  • Yes and no (but mostly no!)
  • humans are much better at hard things
  • computers can be better at easy things

5
Perception
6
Perception
7
Perception
8
Low level processing
  • Low level operations
  • Image enhancement, feature detection, region
    segmentation

9
Mid level processing
  • Mid level operations
  • 3D shape reconstruction, motion estimation

10
High level processing
  • High level operations
  • Recognition of people, places, events

11
Image Enhancement
Image Inpainting, M. Bertalmío et
al. http//www.iua.upf.es/mbertalmio//restoration
.html
12
Image Enhancement
Image Inpainting, M. Bertalmío et
al. http//www.iua.upf.es/mbertalmio//restoration
.html
13
Image Enhancement
Image Inpainting, M. Bertalmío et
al. http//www.iua.upf.es/mbertalmio//restoration
.html
14
Application Document Analysis
Digit recognition, ATT labs http//www.research.a
tt.com/yann/
15
Applications 3D Scanning
  • Scanning Michelangelos The David
  • The Digital Michelangelo Project
  • - http//graphics.stanford.edu/projects/mich/
  • UW Prof. Brian Curless, collaborator
  • 2 BILLION polygons, accuracy to .29mm

16
The Digital Michelangelo Project, Levoy et al.
17
(No Transcript)
18
(No Transcript)
19
(No Transcript)
20
(No Transcript)
21
(No Transcript)
22
ESC Entertainment, XYZRGB, NRC
23
Applications Motion Capture, Games
24
Andy Serkis, Gollum, Lord of the Rings
25
Application Medical Imaging
26
Applications Robotics
27
Syllabus
  • Image Processing (2 weeks)
  • filtering, convolution
  • image pyramids
  • edge detection
  • feature detection (corners, lines)
  • hough transform
  • Image Transformation (2 weeks)
  • image warping (parametric transformations,
    texture mapping)
  • image compositing (alpha blending, color mosaics)
  • segmentation and matting (snakes, scissors)
  • Motion Estimation (1 week)
  • optical flow
  • image alignment
  • image mosaics
  • feature tracking

28
Syllabus
  • Light (1 week)
  • physics of light
  • color
  • reflection
  • shading
  • shape from shading
  • photometric stereo
  • 3D Modeling (3 weeks)
  • projective geometry
  • camera modeling
  • single view metrology
  • camera calibration
  • stereo
  • Object Recognition and Applications (1 week)
  • eigenfaces
  • applications (graphics, robotics)

29
Project 1 Intelligent Scissors
30
Project 2 Panorama Stitching
  • http//www.cs.washington.edu/education/courses/455
    /03wi/projects/project2/artifacts/crosetti/index.s
    html

31
Project 3 3D Shape Reconstruction
32
Project 4 Face Recognition
33
Class Webpage
  • http//www.cs.washington.edu/education/courses/cse
    p576/05wi/

34
Grading
  • Programming Projects (100)
  • image scissors
  • panoramas
  • 3D shape modeling
  • face recognition

35
General Comments
  • Prerequisitesthese are essential!
  • Data structures
  • A good working knowledge of C and C programming
  • (or willingness/time to pick it up quickly!)
  • Linear algebra
  • Vector calculus
  • Course does not assume prior imaging experience
  • computer vision, image processing, graphics, etc.
Write a Comment
User Comments (0)
About PowerShow.com