IIAS-2 - PowerPoint PPT Presentation

1 / 31
About This Presentation
Title:

IIAS-2

Description:

Tensor optimized shell model using bare interaction for light nuclei RCNP – PowerPoint PPT presentation

Number of Views:40
Avg rating:3.0/5.0
Slides: 32
Provided by: myo
Category:
Tags: iias | model | shell

less

Transcript and Presenter's Notes

Title: IIAS-2


1
Tensor optimized shell model using bare
interaction for light nuclei
? ?? ?????? ??RCNP
????? ?? ? ??RCNP ?? ??
??
1
RCNP????????????????????? _at_RCNP 2008.12.23-25
2
Outline
  • Tensor Optimized Shell Model (TOSM)
  • Unitary Correlation Operator Method (UCOM)
  • TOSM UCOM with bare interaction
  • Application of TOSM to Li isotopes
  • Halo formation of 11Li
  • TM, K.Kato, H.Toki, K.Ikeda,
    PRC76(2007)024305
  • TM, K.Kato, K.Ikeda,
    PRC76(2007)054309
  • TM, Sugimoto, Kato, Toki, Ikeda,
    PTP117(2007)257
  • TM. Y.Kikuchi, K.Kato, H.Toki, K.Ikeda,
    PTP119(2008)561
  • TM, H. Toki, K. Ikeda,
    Submited to PTP

3
Motivation for tensor force
  • Tensor force (Vtensor) plays a significant role
    in the nuclear structure.
  • In 4He,
  • 80 (GFMC)

R.B. Wiringa, S.C. Pieper, J. Carlson, V.R.
Pandharipande, PRC62(2001)
  • We would like to understand the role of Vtensor
    in the nuclear structure by describing tensor
    correlation explicitly.
  • model wave function (shell model and cluster
    model)
  • He, Li isotopes (LS splitting, halo formation,
    level inversion)
  • Structures of light nuclei with bare interaction
  • tensor correlation short-range correlation

3
4
Tensor Short-range correlations
  • Tensor correlation in TOSM (long and
    intermediate)
  • 2p2h mixing optimizing the particle states
    (radial high-L)
  • Short-range correlation
  • Short-range repulsion in the bare NN force
  • Unitary Correlation Operator Method (UCOM)

S
D
H. Feldmeier, T. Neff, R. Roth, J. Schnack,
NPA632(1998)61 T. Neff, H. Feldmeier,
NPA713(2003)311
4
4
5
Property of the tensor force
Long and intermediate ranges
  • Centrifugal potential (1GeV_at_0.5fm) pushes away
    the L2 wave function.

5
6
Tensor-optimized shell model (TOSM)
TM, Sugimoto, Kato, Toki, Ikeda PTP117(2007)257
  • Tensor correlation in the shell model type
    approach.
  • Configuration mixingwithin 2p2h excitationswith
    high-L orbit TM et al., PTP113(2005) TM et
    al., PTP117(2007) T.Terasawa, PTP22(59))
  • Length parameters such as
    are determined independently and
    variationally.
  • Describe high momentum component from Vtensor
    CPP-HF by Sugimoto et al,(NPA740) / Akaishi
    (NPA738)CPP-RMF by Ogawa et al.(PRC73), CPP-AMD
    by Dote et al.(PTP115)

4He
6
6
7
Hamiltonian and variational equations in TOSM
TM, Sugimoto, Kato, Toki, Ikeda, PTP117(07)257
  • Effective interaction Akaishi force (NPA738)
  • G-matrix from AV8 with kQ2.8 fm-1
  • Long and intermediate ranges of Vtensor survive.
  • Adjust Vcentral to reproduce B.E. and radius of
    4He

7
8
4He in TOSM
vnn G-matrix
Shrink
Length parameters
Orbit bparticle/bhole
0p1/2 0.65
0p3/2 0.58
1s1/2 0.63
0d3/2 0.58
0d5/2 0.53
0f5/2 0.66
0f7/2 0.55
0 1 2 3 4 5 6
Lmax
Higher shell effect
good convergence
8
8
Cf. K. Shimizu, M. Ichimura and A. Arima,
NPA226(1973)282.
9
Configuration of 4He in TOSM
Energy (MeV) ? 28.0
? 51.0
4 Gaussians instead of HO
(0s1/2)4 85.0
(0s1/2)2JT(0p1/2)2JT JT10 5.0
JT01 0.3
(0s1/2)210(1s1/2)(0d3/2)10 2.4
(0s1/2)210(0p3/2)(0f5/2)10 2.0
PD 9.6
c.m. excitation 0.6 MeV
  • 0? of pion nature.
  • deuteron correlation with (J,T)(1,0)

Cf. R.Schiavilla et al. (GFMC)
PRL98(07)132501
9
10
Tensor Short-range correlations
  • Tensor correlation in TOSM (long and
    intermediate)
  • 2p2h mixing optimizing the particle states
    (radial high-L)
  • Short-range correlation
  • Short-range repulsion in the bare NN force
  • Unitary Correlation Operator Method (UCOM)

S
D
TOSMUCOM
H. Feldmeier, T. Neff, R. Roth, J. Schnack,
NPA632(1998)61 T. Neff, H. Feldmeier
NPA713(2003)311
10
10
11
Unitary Correlation Operator Method
TOSM
short-range correlator
Bare Hamiltonian
Shift operator depending on the relative distance
r
2-body cluster expansion of Hamiltonian
H. Feldmeier, T. Neff, R. Roth, J. Schnack,
NPA632(1998)61
11
11
12
Short-range correlator C (or Cr)
1E
Original?r2
3GeV repulsion
3E
Vc
1O
?C
3O
AV8 CentralLSTensor
12
13
4He in UCOM (Afnan-Tang, Vc only)
?C
13
13
14
4He with AV8 in TOSMUCOM
AV8 Central LSTensor
exact
Kamada et al. PRC64 (Jacobi)
  • Gaussian expansion for particle states (6
    Gaussians)
  • Two-body cluster expansion of Hamiltonian

14
15
Extension of UCOM S-wave UCOM
for only relative S-wave wave function
minimal effect of UCOM
SD coupling
5 MeV gain
15
15
16
Different effects of correlation function
  • S-wave

S
No Centrifugal Barrier
Short-range repulsion
D
  • D-wave

due to Centrifugal Barrier
16
16
17
Saturation of 4He in UCOM
UCOM short-range tensor
T. Neff, H. Feldmeier NPA713(2003)311
Short tensor
Energy
TOSMUCOM
Long tensor
Benchmark cal. Kamada et al. PRC64
17
18
4He in TOSM S-wave UCOM
T
(exact)
Kamada et al. PRC64 (Jacobi)
Remaining effect 3-body cluster term
in UCOM
VLS
E
VC
VT
18
19
Summary
  • Tensor and short-range correlations
  • Tensor-optimized shell model (TOSM)
  • He Li isotopes (LS splitting, Halo formation)
  • Unitary Correlation Operator Method (UCOM)
  • Extended UCOM S-wave UCOM
  • In TOSMUCOM, we can study the nuclear structure
    starting from the bare interaction.
  • Spectroscopy of light nuclei (p-shell, sd-shell)

19
19
20
Pion exchange interaction vs. Vtensor
Involve large momentum
Delta interaction
Tensor operator
Yukawa interaction
- Vtensor produces the high momentum component.
20
21
Characteristics of Li-isotopes
Halo structure
  • Breaking of magicity N8
  • 10-11Li, 11-12Be
  • 11Li (1s)2 50. (Expt by Simon et
    al.,PRL83)
  • Mechanism is unclear

11Li
21
22
Pairing-blocking K.Kato,T.Yamada,K.Ikeda,PTP1
01(99)119, Masui,S.Aoyama,TM,K.Kato,K.Ikeda,NPA
673('00)207. TM,S.Aoyama,K.Kato,K.Ikeda,PTP10
8('02)133, H.Sagawa,B.A.Brown,H.Esbensen,PLB3
09('93)1.
22
23
11Li in coupled 9Linn model
  • System is solved based on RGM

TOSM
  • Orthogonality Condition Model (OCM) is applied.

23
24
11Li G.S. properties (S2n0.31 MeV)
Rm
Simon et al.
P(s2)
Tensor Pairing
E(s2)-E(p2) 2.1 1.4 0.5 -0.1 MeV
Pairing correlation couples (0p)2 and (1s)2 for
last 2n
25
2n correlation density in 11Li
s24
s247
9Li
9Li
n
n
Di-neutron type config.
Cigar type config.
H.Esbensen and G.F.Bertsch, NPA542(1992)310
25
K. Hagino and H. Sagawa, PRC72(2005)044321
26
Short-range correlator C (or Cr)
Hamiltonian in UCOM
2-body approximation in the cluster expansion of
operator
27
LS splitting in 5He with tensor corr.
  • T. Terasawa,PTP22(59)
  • S. Nagata, T. Sasakawa, T. Sawada R. Tamagaki,
    PTP22(59)
  • K. Ando, H. Bando PTP66(81)
  • TM, K.Kato, K.Ikeda PTP113(05)
  • Orthogonarity Condition Model (OCM) is applied.

27
28
Phase shifts of 4He-n scattering
28
29
6He in coupled 4Henn model
  • System is solved based on RGM

TOSM
  • Orthogonality Condition Model (OCM) is applied.

29
30
Tensor correlation in 6He
Ground state
Excited state
TM, K. Kato, K. Ikeda, J. Phys. G31 (2005) S1681
30
30
31
6He results in coupled 4Henn model
Theory With Tensor
complex scaling for resonances
  • (0p3/2)2 can be described in Naive 4Henn model
  • (0p1/2)2 loses the energy

Tensor suppression in 02
31
31
Write a Comment
User Comments (0)
About PowerShow.com