Title: Supplement F - Linear Programming
1Supplement F -Linear Programming
2Basic Concepts
- Objective function
- Decision variables
- Constraints
- Feasible region
- Parameters
- Linearity
- Nonnegativity
3Stratton Company
Pipes R Us
4(No Transcript)
5Linear Programming
Step 1Define the decision variables
- x1 amount of type 1 pipe produced and sold next
week, 100-foot increments - x2 amount of type 2 pipe produced and sold next
week, 100-foot increments
Example F.1
6Linear Programming
Step 2Define the objective function
Example F.1
7Linear Programming
Step 2Define the objective function
Max Z
Objective
Example F.1
8Linear Programming
Step 2Define the objective function
Max Z
Example F.1
9Linear Programming
Step 2Define the objective function
Max Z x1 x2
Decision variables
Example F.1
10Linear Programming
Step 2Define the objective function
Max Z x1 x2
Example F.1
11Linear Programming
Step 2Define the objective function
Max Z 34 x1 40 x2
Coefficients
Example F.1
12Linear Programming
Step 2Define the objective function
Max Z 34 x1 40 x2
Example F.1
13(No Transcript)
14Linear Programming
Step 3Formulate the constraints
Max Z 34 x1 40 x2
Example F.1
15Linear Programming
Step 3Formulate the constraints
Max Z 34 x1 40 x2
48 (extrusion)
Right-hand side value
Example F.1
16Linear Programming
Step 3Formulate the constraints
Max Z 34 x1 40 x2
48 (extrusion)
RHS value
Example F.1
17Linear Programming
Step 3Formulate the constraints
Max Z 34 x1 40 x2
48 (extrusion)
Example F.1
18Linear Programming
Step 3Formulate the constraints
Max Z 34 x1 40 x2
? 48 (extrusion)
Type of limit
Example F.1
19Linear Programming
Step 3Formulate the constraints
Example F.1
20Linear Programming
Step 3Formulate the constraints
Max Z 34 x1 40 x2
? 48 (extrusion)
Example F.1
21Linear Programming
Step 3Formulate the constraints
Max Z 34 x1 40 x2
x1 x2 ? 48 (extrusion)
Decision variables
Example F.1
22Linear Programming
Step 3Formulate the constraints
Max Z 34 x1 40 x2
x1 x2 ? 48 (extrusion)
Example F.1
23Linear Programming
Step 3Formulate the constraints
Max Z 34 x1 40 x2
4 x1 6 x2 ? 48 (extrusion)
Coefficients
Example F.1
24Linear Programming
Step 3Formulate the constraints
Max Z 34 x1 40 x2
4 x1 6 x2 ? 48 (extrusion)
Example F.1
25Linear Programming
Step 3Formulate the constraints
Max Z 34 x1 40 x2
4 x1 6 x2 ? 48 (extrusion) 2 x1 2 x2 ? 18
(packaging) 2 x1 x2 ? 16 (additive mix)
Example F.1
26Linear Programming
Graphical solution
27Linear Programming
Figure F.1
28Linear Programming
x2
18 16 14 12 10 8 6 4 2 0
Graphical solution
(0, 8)
4x1 6x2 ? 48 (extrusion)
(12, 0)
2 4 6 8 10 12 14 16 18
x1
Figure F.1
29Linear Programming
x2
18 16 14 12 10 8 6 4 2 0
Graphical solution
(0, 8)
4x1 6x2 ? 48 (extrusion)
(12, 0)
2 4 6 8 10 12 14 16 18
x1
Figure F.1
30Linear Programming
x2
18 16 14 12 10 8 6 4 2 0
Graphical solution
(0, 9)
2x1 2x2 ? 18 (packaging)
4x1 6x2 ? 48 (extrusion)
(9, 0)
2 4 6 8 10 12 14 16 18
x1
Example F.2
31Linear Programming
x2
18 16 14 12 10 8 6 4 2 0
Graphical solution
(0, 9)
2x1 2x2 ? 18 (packaging)
4x1 6x2 ? 48 (extrusion)
(9, 0)
2 4 6 8 10 12 14 16 18
x1
Example F.2
32Linear Programming
x2
18 16 14 12 10 8 6 4 2 0
Graphical solution
(0, 16)
2x1 x2 ? 16 (additive mix)
2x1 2x2 ? 18 (packaging)
4x1 6x2 ? 48 (extrusion)
(8, 0)
2 4 6 8 10 12 14 16 18
x1
Example F.2
33Linear Programming
x2
18 16 14 12 10 8 6 4 2 0
Graphical solution
(0, 16)
2x1 x2 ? 16 (additive mix)
2x1 2x2 ? 18 (packaging)
4x1 6x2 ? 48 (extrusion)
(8, 0)
2 4 6 8 10 12 14 16 18
x1
Example F.2
34Linear Programming
x2
18 16 14 12 10 8 6 4 2 0
Graphical solution
2x1 x2 ? 16 (additive mix)
2x1 2x2 ? 18 (packaging)
4x1 6x2 ? 48 (extrusion)
2 4 6 8 10 12 14 16 18
x1
Figure F.2
35Linear Programming
Figure F.3
36Linear Programming
Feasible region
Figure F.3
37Linear Programming
x2
Feasible region
2x1 x2 ? 10
2x1 3x2 ? 18
x1
Figure F.3
38Linear Programming
Figure F.3
39Linear Programming
Figure F.3
40Linear Programming
Figure F.3
41Linear Programming
x2
Feasible region
2x1 x2 ? 10
6x1 5x2 ? 5
x1 ? 7
x2 ? 5
Feasible region
2x1 3x2 ? 18
x1
Figure F.3
42Linear Programming
Test point
Figure F.3
43Linear Programming
x2
18 16 14 12 10 8 6 4 2 0
Graphical solution
2x1 x2 ? 16 (additive mix)
B
2x1 2x2 ? 18 (packaging)
C
4x1 6x2 ? 48 (extrusion)
Feasible region
D
E
2 4 6 8 10 12 14 16 18
x1
A
Figure F.4
44Linear Programming
x2
18 16 14 12 10 8 6 4 2 0
Graphical solution
2x1 x2 ? 16 (additive mix)
B
2x1 2x2 ? 18 (packaging)
34x1 40x2 272
C
(0,6.8)
4x1 6x2 ? 48 (extrusion)
D
2 4 6 8 10 12 14 16 18
x1
A
Figure F.5
E (8,0)
45Linear Programming
x2
18 16 14 12 10 8 6 4 2 0
Graphical solution
2x1 x2 ? 16 (additive mix)
B
2x1 2x2 ? 18 (packaging)
C
(0,6.8)
4x1 6x2 ? 48 (extrusion)
D
2 4 6 8 10 12 14 16 18
x1
A
E (8,0)
46Linear Programming
x2
18 16 14 12 10 8 6 4 2 0
Graphical solution
2x1 x2 ? 16 (additive mix)
B
2x1 2x2 ? 18 (packaging)
C
(0,6.8)
4x1 6x2 ? 48 (extrusion)
D
2 4 6 8 10 12 14 16 18
x1
A
E (8,0)
47Linear Programming
x2
18 16 14 12 10 8 6 4 2 0
Graphical solution
2x1 x2 ? 16 (additive mix)
B
2x1 2x2 ? 18 (packaging)
Optimal solution (3,6)
C
(0,6.8)
4x1 6x2 ? 48 (extrusion)
D
2 4 6 8 10 12 14 16 18
x1
A
Figure F.6
E (8,0)
48Linear Programming
49Linear Programming
Optimal corner point
4x1 6x2 48 2x1 2x2 18
50Linear Programming
Optimal corner point
4x1 6x2 48 (4x1 4x2 36)
51Linear Programming
Optimal corner point
4x1 6x2 48 (4x1 4x2 36) 2x2 12
52Linear Programming
Optimal corner point
4x1 6x2 48 (4x1 4x2 36) 2x2 12
x2 6
53Linear Programming
Optimal corner point
4x1 6(6) 48 (4x1 4x2 36) 2x2 12
x2 6
54Linear Programming
Optimal corner point
4x1 6(6) 48 4x1 12 x1 3
55Linear Programming
Slack variables
Slack and Surplus Variables
2x1 x2 ? 16 (additive mix)
2x1 2x2 ? 18 (packaging)
Optimal solution (3,6)
4x1 6x2 ? 48 (extrusion)
D
2 4 6 8 10 12 14 16 18
x1
Example F.4
E (8,0)
56Linear Programming
Slack variables
2x1 x2 16
Slack and Surplus Variables
2x1 x2 ? 16 (additive mix)
2x1 2x2 ? 18 (packaging)
Optimal solution (3,6)
4x1 6x2 ? 48 (extrusion)
D
2 4 6 8 10 12 14 16 18
x1
Example F.4
E (8,0)
57Linear Programming
Slack variables
2x1 x2 16 2x1 x2 s1 16
Slack and Surplus Variables
2x1 x2 ? 16 (additive mix)
2x1 2x2 ? 18 (packaging)
Optimal solution (3,6)
4x1 6x2 ? 48 (extrusion)
D
2 4 6 8 10 12 14 16 18
x1
Example F.4
E (8,0)
58Linear Programming
Slack variables
2x1 x2 16 2(3) 6 s1 16
Slack and Surplus Variables
2x1 x2 ? 16 (additive mix)
2x1 2x2 ? 18 (packaging)
Optimal solution (3,6)
4x1 6x2 ? 48 (extrusion)
D
2 4 6 8 10 12 14 16 18
x1
Example F.4
E (8,0)
59Linear Programming
Slack variables
2x1 x2 16 s1 4
Slack and Surplus Variables
2x1 x2 ? 16 (additive mix)
2x1 2x2 ? 18 (packaging)
Optimal solution (3,6)
4x1 6x2 ? 48 (extrusion)
D
2 4 6 8 10 12 14 16 18
x1
Example F.4
E (8,0)
60Linear Programming
Objective function coefficients
18 16 14 12 10 8 6 4 2 0
Sensitivity analysis
2x1 x2 ? 16 (additive mix)
B
2x1 2x2 ? 18 (packaging)
C
D
4x1 6x2 ? 48 (extrusion)
2 4 6 8 10 12 14 16 18
x1
A
E
61Linear Programming
Objective function coefficients
34x1 40x2 Z
18 16 14 12 10 8 6 4 2 0
Sensitivity analysis
2x1 x2 ? 16 (additive mix)
B
2x1 2x2 ? 18 (packaging)
C
D
4x1 6x2 ? 48 (extrusion)
2 4 6 8 10 12 14 16 18
x1
A
E
62Linear Programming
Objective function coefficients
34x1 40x2 Z 40x2 34x1 Z
18 16 14 12 10 8 6 4 2 0
Sensitivity analysis
2x1 x2 ? 16 (additive mix)
B
2x1 2x2 ? 18 (packaging)
C
D
4x1 6x2 ? 48 (extrusion)
2 4 6 8 10 12 14 16 18
x1
A
E
63Linear Programming
Objective function coefficients
34x1 40x2 Z 40x2 34x1 Z x2
18 16 14 12 10 8 6 4 2 0
Sensitivity analysis
34x1 Z 40 40
2x1 x2 ? 16 (additive mix)
B
2x1 2x2 ? 18 (packaging)
C
D
4x1 6x2 ? 48 (extrusion)
2 4 6 8 10 12 14 16 18
x1
A
E
64Linear Programming
Objective function coefficients
34x1 40x2 Z 40x2 34x1 Z x2
18 16 14 12 10 8 6 4 2 0
Sensitivity analysis
c1x1 Z c2 c2
2x1 x2 ? 16 (additive mix)
B
2x1 2x2 ? 18 (packaging)
C
D
4x1 6x2 ? 48 (extrusion)
2 4 6 8 10 12 14 16 18
x1
A
E
65Linear Programming
Objective function coefficients
34x1 40x2 Z 40x2 34x1 Z x2
18 16 14 12 10 8 6 4 2 0
Sensitivity analysis
c1x1 Z c2 c2
If c1 increases
2x1 x2 ? 16 (additive mix)
B
2x1 2x2 ? 18 (packaging)
C
D
4x1 6x2 ? 48 (extrusion)
2 4 6 8 10 12 14 16 18
x1
A
E
66Linear Programming
Objective function coefficients
34x1 40x2 Z 40x2 34x1 Z x2
18 16 14 12 10 8 6 4 2 0
Sensitivity analysis
c1x1 Z c2 c2
If c1 increases
2x1 x2 ? 16 (additive mix)
B
2x1 2x2 ? 18 (packaging)
C
D
4x1 6x2 ? 48 (extrusion)
2 4 6 8 10 12 14 16 18
x1
A
E
67Linear Programming
Objective function coefficients
34x1 40x2 Z 40x2 34x1 Z x2
18 16 14 12 10 8 6 4 2 0
Sensitivity analysis
c1x1 Z c2 c2
If c1 decreases
2x1 x2 ? 16 (additive mix)
B
2x1 2x2 ? 18 (packaging)
C
D
4x1 6x2 ? 48 (extrusion)
2 4 6 8 10 12 14 16 18
x1
A
E
68Linear Programming
Objective function coefficients
34x1 40x2 Z 40x2 34x1 Z x2
18 16 14 12 10 8 6 4 2 0
Sensitivity analysis
c1x1 Z c2 c2
If c1 decreases
2x1 x2 ? 16 (additive mix)
B
2x1 2x2 ? 18 (packaging)
New Optimal Point
C
D
4x1 6x2 ? 48 (extrusion)
2 4 6 8 10 12 14 16 18
x1
A
E
69Linear Programming
Range of optimality
18 16 14 12 10 8 6 4 2 0
Sensitivity analysis
2x1 x2 ? 16 (additive mix)
B
2x1 2x2 ? 18 (packaging)
(Slope 1)
C
D
4x1 6x2 ? 48 (extrusion)
(Slope 2/3)
2 4 6 8 10 12 14 16 18
x1
A
Figure F.7
E
70Linear Programming
Range of optimality
34 2 c2 3
1 ? ?
18 16 14 12 10 8 6 4 2 0
Sensitivity analysis
2x1 x2 ? 16 (additive mix)
B
2x1 2x2 ? 18 (packaging)
(Slope 1)
C
D
4x1 6x2 ? 48 (extrusion)
(Slope 2/3)
2 4 6 8 10 12 14 16 18
x1
A
Example F.5
E
71Linear Programming
Range of optimality
34 2 c2 3
1 ? ? 1 ?
18 16 14 12 10 8 6 4 2 0
Sensitivity analysis
34 c2
2x1 x2 ? 16 (additive mix)
B
2x1 2x2 ? 18 (packaging)
(Slope 1)
C
D
4x1 6x2 ? 48 (extrusion)
(Slope 2/3)
2 4 6 8 10 12 14 16 18
x1
A
Example F.5
E
72Linear Programming
Range of optimality
34 2 c2 3
1 ? ? c2 ? 34
18 16 14 12 10 8 6 4 2 0
Sensitivity analysis
2x1 x2 ? 16 (additive mix)
B
2x1 2x2 ? 18 (packaging)
(Slope 1)
C
D
4x1 6x2 ? 48 (extrusion)
(Slope 2/3)
2 4 6 8 10 12 14 16 18
x1
A
Example F.5
E
73Linear Programming
Range of optimality
34 2 c2 3
1 ? ? ?
18 16 14 12 10 8 6 4 2 0
Sensitivity analysis
34 2 c2 3
2x1 x2 ? 16 (additive mix)
B
2x1 2x2 ? 18 (packaging)
(Slope 1)
C
D
4x1 6x2 ? 48 (extrusion)
(Slope 2/3)
2 4 6 8 10 12 14 16 18
x1
A
Example F.5
E
74Linear Programming
Range of optimality
34 2 c2 3
1 ? ? 34 ?
18 16 14 12 10 8 6 4 2 0
Sensitivity analysis
2c2 3
2x1 x2 ? 16 (additive mix)
B
2x1 2x2 ? 18 (packaging)
(Slope 1)
C
D
4x1 6x2 ? 48 (extrusion)
(Slope 2/3)
2 4 6 8 10 12 14 16 18
x1
A
Example F.5
E
75Linear Programming
Range of optimality
34 2 c2 3
1 ? ? 51 ? c2
18 16 14 12 10 8 6 4 2 0
Sensitivity analysis
2x1 x2 ? 16 (additive mix)
B
2x1 2x2 ? 18 (packaging)
(Slope 1)
C
D
4x1 6x2 ? 48 (extrusion)
(Slope 2/3)
2 4 6 8 10 12 14 16 18
x1
A
Example F.5
E
76Linear Programming
Range of optimality
34 2 c2 3
1 ? ? 34 ? c2 ? 51
18 16 14 12 10 8 6 4 2 0
Sensitivity analysis
2x1 x2 ? 16 (additive mix)
B
2x1 2x2 ? 18 (packaging)
(Slope 1)
C
D
4x1 6x2 ? 48 (extrusion)
(Slope 2/3)
2 4 6 8 10 12 14 16 18
x1
A
Example F.5
E
77Linear Programming
x2
18 16 14 12 10 8 6 4 2 0
Sensitivity analysis
2x1 x2 ? 16 (additive mix)
B
2x1 2x2 ? 18 (packaging)
C
D
4x1 6x2 ? 48 (extrusion)
2 4 6 8 10 12 14 16 18
x1
A
E
78Linear Programming
x2
18 16 14 12 10 8 6 4 2 0
Sensitivity analysis
Optimal solution before rotation
2x1 x2 ? 16 (additive mix)
B
2x1 2x2 ? 18 (packaging)
(Slope 1)
C
Optimal solution after rotation
D
4x1 6x2 ? 48 (extrusion)
(Slope 2/3)
2 4 6 8 10 12 14 16 18
x1
A
Figure F.8
E
79Linear Programming
Coefficient sensitivity
18 16 14 12 10 8 6 4 2 0
Sensitivity analysis
Optimal solution before rotation
2x1 x2 ? 16 (additive mix)
B
2x1 2x2 ? 18 (packaging)
(Slope 1)
C
Optimal solution after rotation
D
4x1 6x2 ? 48 (extrusion)
(Slope 2/3)
2 4 6 8 10 12 14 16 18
x1
A
Example F.6
E
80Linear Programming
Coefficient sensitivity
18 16 14 12 10 8 6 4 2 0
Sensitivity analysis
Optimal solution before rotation
2x1 x2 ? 16 (additive mix)
B
2x1 2x2 ? 18 (packaging)
(Slope 1)
C
Optimal solution after rotation
D
4x1 6x2 ? 48 (extrusion)
(Slope 2/3)
2 4 6 8 10 12 14 16 18
x1
A
Example F.6
E
81Linear Programming
Coefficient Sensitivity
18 16 14 12 10 8 6 4 2 0
Sensitivity analysis
Optimal solution before rotation
2x1 x2 ? 16 (additive mix)
B
2x1 2x2 ? 18 (packaging)
(Slope 1)
C
Optimal solution after rotation
D
4x1 6x2 ? 48 (extrusion)
(Slope 2/3)
2 4 6 8 10 12 14 16 18
x1
A
Example F.6
E
82Linear Programming
Coefficient Sensitivity
18 16 14 12 10 8 6 4 2 0
Sensitivity analysis
Optimal solution before rotation
2x1 x2 ? 16 (additive mix)
B
2x1 2x2 ? 18 (packaging)
(Slope 1)
C
Optimal solution after rotation
D
4x1 6x2 ? 48 (extrusion)
(Slope 2/3)
2 4 6 8 10 12 14 16 18
x1
A
Example F.6
E
83Linear Programming
x2
18 16 14 12 10 8 6 4 2 0
Sensitivity analysis
2x1 x2 ? 16 (additive mix)
2x1 2x2 ? 18 (original packaging constraint)
B
C
4x1 6x2 ? 48 (extrusion)
D
2 4 6 8 10 12 14 16 18
x1
A
E
84Linear Programming
85Linear Programming
Optimal corner point
18 16 14 12 10 8 6 4 2 0
Sensitivity analysis
2x1 x2 ? 16 (additive mix)
2x1 2x2 ? 18 (original packaging constraint)
B
2x1 2x2 ? 19 (relaxed packaging constraint)
C
Increase in feasible region
4x1 6x2 ? 48 (extrusion)
C?
D
2 4 6 8 10 12 14 16 18
x1
A
Figure F.9
E
86Linear Programming
Optimal corner point
4x1 6x2 48 2x1 2x2 19
x2
18 16 14 12 10 8 6 4 2 0
Sensitivity analysis
2x1 x2 ? 16 (additive mix)
2x1 2x2 ? 18 (original packaging constraint)
B
2x1 2x2 ? 19 (relaxed packaging constraint)
C
Increase in feasible region
4x1 6x2 ? 48 (extrusion)
C?
D
2 4 6 8 10 12 14 16 18
x1
A
Figure F.9
E
87Linear Programming
Optimal corner point
4x1 6x2 48 2x1 2x2 19 x1 4.5 x2
5
x2
18 16 14 12 10 8 6 4 2 0
Sensitivity analysis
2x1 x2 ? 16 (additive mix)
2x1 2x2 ? 18 (original packaging constraint)
B
2x1 2x2 ? 19 (relaxed packaging constraint)
C
Increase in feasible region
4x1 6x2 ? 48 (extrusion)
C?
D
2 4 6 8 10 12 14 16 18
x1
A
Figure F.9
E
88Linear Programming
Optimal corner point
4x1 6x2 48 2x1 2x2 19 x1 4.5 x2
5
x2
18 16 14 12 10 8 6 4 2 0
Sensitivity analysis
Z 34(4.5) 40(5) 353
2x1 x2 ? 16 (additive mix)
2x1 2x2 ? 18 (original packaging constraint)
B
2x1 2x2 ? 19 (relaxed packaging constraint)
C
Increase in feasible region
4x1 6x2 ? 48 (extrusion)
C?
D
2 4 6 8 10 12 14 16 18
x1
A
Figure F.9
E
89Linear Programming
Optimal corner point
4x1 6x2 48 2x1 2x2 19 x1 4.5 x2
5
x2
18 16 14 12 10 8 6 4 2 0
Sensitivity analysis
Z 34(4.5) 40(5) 353
2x1 x2 ? 16 (additive mix)
353 - 342 11
2x1 2x2 ? 18 (original packaging constraint)
B
2x1 2x2 ? 19 (relaxed packaging constraint)
C
Increase in feasible region
4x1 6x2 ? 48 (extrusion)
C?
D
2 4 6 8 10 12 14 16 18
x1
A
Figure F.9
E
90Linear Programming
Optimal corner point
4x1 6x2 48 2x1 2x2 19 x1 4.5 x2
5
x2
18 16 14 12 10 8 6 4 2 0
Shadow price for packaging constraint
Sensitivity analysis
Z 34(4.5) 40(5) 353
2x1 x2 ? 16 (additive mix)
353 - 342 11
2x1 2x2 ? 18 (original packaging constraint)
B
2x1 2x2 ? 19 (relaxed packaging constraint)
C
Increase in feasible region
4x1 6x2 ? 48 (extrusion)
C?
D
2 4 6 8 10 12 14 16 18
x1
A
Figure F.9
E
91Linear Programming
x2
18 16 14 12 10 8 6 4 2 0
Sensitivity analysis
2x1 x2 ? 16 (additive mix)
B
2x1 2x2 ? 18 (packaging)
C
4x1 6x2 ? 48 (extrusion)
D
2 4 6 8 10 12 14 16 18
x1
A
E
92Linear Programming
93Linear Programming
Lower limit of shadow price
18 16 14 12 10 8 6 4 2 0
Sensitivity analysis
2x1 x2 ? 16 (additive mix)
B
2x1 2x2 ? 18 (packaging)
Packaging constraint for upper bound
Packaging constraint for lower bound
C
4x1 6x2 ? 48 (extrusion)
C?
D
2 4 6 8 10 12 14 16 18
x1
A
Example F.7
E
94Linear Programming
Lower limit of shadow price
B is the lowest feasible limit
18 16 14 12 10 8 6 4 2 0
Sensitivity analysis
2x1 x2 ? 16 (additive mix)
B
2x1 2x2 ? 18 (packaging)
Packaging constraint for upper bound
Packaging constraint for lower bound
C
4x1 6x2 ? 48 (extrusion)
C?
D
2 4 6 8 10 12 14 16 18
x1
A
Example F.7
E
95Linear Programming
Lower limit of shadow price
B is the lowest feasible limit For packaging, B,
x1 0 and x2 8 2(0) 2(8) 16 hours
18 16 14 12 10 8 6 4 2 0
Sensitivity analysis
2x1 x2 ? 16 (additive mix)
B
2x1 2x2 ? 18 (packaging)
Packaging constraint for upper bound
Packaging constraint for lower bound
C
4x1 6x2 ? 48 (extrusion)
C?
D
2 4 6 8 10 12 14 16 18
x1
A
Example F.7
E
96Linear Programming
97Linear Programming
Figure F.11
98Linear Programming
Figure F.12
99Linear Programming
Figure F.12
100Linear Programming
Example F.8
101Linear Programming
Example F.8
102Linear Programming
Example F.8
103Linear Programming
No, too expensive. 8 gt 3
Example F.8
104Linear Programming
Example F.8
105Linear Programming
Yes, increased revenue. 6 lt 11
Example F.8
106Linear Programming
Example F.8
107Linear Programming
Aggregate planning Production, Staffing,
Blends Distribution Shipping Inventory Stock
control, Supplier selection Location Plants or
warehouses Process management Stock
cutting Scheduling Shifts, Vehicles, Routing
108Solved Problem 1
Figure F.13
109Solved Problem 1
Figure F.14
110Solved Problem 1
Figure F.15
111Solved Problem 2
750 500 250 0
x2
Feasible region has no upper bound.
A
x1 x2 750 (minimum number)
0.30 x1 0.20 x2 150.00 (isocost line)
0.02 x1 0.04 x2 20 (minimum order)
B
C
5 10 15
x1
Figure F.16