Title: Remote Sensing : Understanding Hyperspectral Imaging
1Remote Sensing Understanding Hyperspectral
Imaging
- Christian Sánchez López
- Métodos de Investigación Bibliográfica
- Prof. Liz M. Págan
2What is Hyperspectral Imaging (HSI) ?
- Hyperspectral images are constructed by sampling
multiple spectral bands for each pixel or
discrete spatial sampling location. - Produces a set of images, each acquired over a
relatively narrow electromagnetic bandwidth. - Images contain large amounts of data.
3Hyperspectral Imaging (HSI)
- Technique
- Collect image data simultaneously
- Dozens or hundreds of narrow, adjacent spectral
bands - Purpose
- Obtain a complete reflectance spectrum for the
region being analyzed - Image pixel
- Spectral information over the hundreds of bands
to generate a "data cube"
4Sampling the Spectrum
5Hyperspectral Imaging (HSI)
- Hyperspectral Imaging, also referred to as
Imaging Spectrometry, combines - conventional imaging,
- spectroscopy, and
- radiometry
- to produce images for which a spectral signature
is associated with each spatial resolution
element (pixel)
Picture taken from http//www2.brgm.fr/mineo
6Hyperspectral Imaging (HSI)
- Hyperspectral sensors collect data to produce
data cubes. These consist of the two spatial
dimensions and a large spectral dimension.
Data Cube 1
7Hyperspectral Imaging (HSI)
Conventional Image
Hyperspectral Image
8Research Process
- In order to gather the necessary information
about Hyperspectral Imaging we used the following
tools - Database searches most of the articles where
found using this tool. - Internet Portal searches provide ways to search
for books, newspaper articles and websites on the
specific topic. - Research on published papers and thesis peer
reveiwed papers provide credible sources of
information. They are a good way to get up to
speed quickly and efficently on the topic at
hand.
9Research Process
10Conclusion
- The process of finding information relating to
these specific topic was not very difficult. The
world wide web provides means to find information
on almost anything we need. Database searches
provide excellent results with proven resources
including thesis, published papers and
peer-reviewed articles. These is just an example
of how the research process has moved from just
going into a Library and searching for books and
materials on a specific topic. Difficulties
confronted in this research was gaining the
initial knowledge on resources what are they and
how to differentiate between good and bad
resources.
11References
- El-Sheimy, Valeo, Habib. (2005). Digital terrain
modeling acquisition, manipulation, and
applications. Norwood, MA Artech House, Inc. -  Goetz, A., Vane, G., Solomon, J., Rock, B.
(1985, June 7). Imaging spectrometry for earth
remote sensing. Science, p1147(7). - Â Gonzalez, D., Sanchez, C., Veguilla, R.,
Santiago, N., Rosario-Torres, S Velez-Reyes, M.
(2008). Abundance estimation algorithms using
NVIDIA registered trademark CUDA trademark
technology. Electronic Version. Proceedings of
SPIE - The International Society for Optical
Engineering, v 6966, Algorithms and Technologies
for Multispectral, Hyperspectral, and
Ultraspectral Imager, 7, 2008, p 69661E. - Â Masalmah, Y.M. Velez-Reyes, M., Rosario-Torres,
S. (2005). An algorithm for unsupervised
unmixing of hyperspectral imagery using positive
matrix factorizationElectronic Version.
Proceedings of the SPIE - The International
Society for Optical Engineering, v 5806, n 1, p
703-10. - Morales-Morales, J.(2007). An FPGA implementation
of the image space reconstruction algorithm for
hyperspectral imaging analysis. Master thesis,
Electrical and Computer Engineering Department,
University of Puerto Rico, Mayaguez Campus.
1 Rosario-Torres, Samuel, Velez-Reyes, Miguel,
An algorithm for fully constrained abundance
estimation in hyperspectralunmixing, Proceedings
of SPIE - The International Society for Optical
Engineering, v 5806, n PART II, Algorithms and
Technologies for Multispectral, Hyperspectral,
and Ultraspectral Imagery XI, 2005, p 711-719
2 Javier Morales, Nayda G. Santiago, and
Alejandro Fernández, An FPGA Implementation of
Image Space Reconstruction Algorithm
forHyperspectral Imaging Analysis, Proceedings
of the SPIE, Vol. 6565 65651V (2007), Algorithms
and Technologies for Multispectral,Hyperspectral,
and Ultraspectral Imagery XIII, editors Sylvia
S. Shenand Paul E. Lewis, pp, V-1 to V-12. 3
http//www.nvidia.com/object/cuda 4http//develo
per.download.nvidia.com/compute/cuda/0_8/NVIDIA_CU
DA_ Programming Guide_0.8.pdf 5http//www3.stat.
sinica.edu.tw/statistica/password.asp?vol5num1
art 5 Introduction to the Iterative Image Space
Restoration Algorithm 6 J. D. Owens, D. Luebke,
N. Govindaraju, M. Harris, J. Krüger, A. E.
Lefohn, T. J. Purcell ,A Survey of
General-Purpose Computation on Graphics Hardware,
In Proceedings in Eurographics 2005, Aug. 2005,
Dublin, Ireland, Pages 21 51. 7 David
González, Christian Sánchez, Ricardo Veguilla,
Nayda Santiago, Samuel Rosario, and Miguel Vélez,
An algorithm for fully constrained abundance
estimation in hyperspectralunmixing, Proceedings
of SPIE - The International Society for Optical
Engineering , v6966, Algorithms and Technologies
for Multispectral, Hyperspectral, and
Ultraspectral Imagery XIV, 2008.
1 Rosario-Torres, Samuel, Velez-Reyes, Miguel,
An algorithm for fully constrained abundance
estimation in hyperspectralunmixing, Proceedings
of SPIE - The International Society for Optical
Engineering, v 5806, n PART II, Algorithms and
Technologies for Multispectral, Hyperspectral,
and Ultraspectral Imagery XI, 2005, p 711-719
2 Javier Morales, Nayda G. Santiago, and
Alejandro Fernández, An FPGA Implementation of
Image Space Reconstruction Algorithm
forHyperspectral Imaging Analysis, Proceedings
of the SPIE, Vol. 6565 65651V (2007), Algorithms
and Technologies for Multispectral,Hyperspectral,
and Ultraspectral Imagery XIII, editors Sylvia
S. Shenand Paul E. Lewis, pp, V-1 to V-12. 3
http//www.nvidia.com/object/cuda 4http//develo
per.download.nvidia.com/compute/cuda/0_8/NVIDIA_CU
DA_ Programming Guide_0.8.pdf 5http//www3.stat.
sinica.edu.tw/statistica/password.asp?vol5num1
art 5 Introduction to the Iterative Image Space
Restoration Algorithm 6 J. D. Owens, D. Luebke,
N. Govindaraju, M. Harris, J. Krüger, A. E.
Lefohn, T. J. Purcell ,A Survey of
General-Purpose Computation on Graphics Hardware,
In Proceedings in Eurographics 2005, Aug. 2005,
Dublin, Ireland, Pages 21 51. 7 David
González, Christian Sánchez, Ricardo Veguilla,
Nayda Santiago, Samuel Rosario, and Miguel Vélez,
An algorithm for fully constrained abundance
estimation in hyperspectralunmixing, Proceedings
of SPIE - The International Society for Optical
Engineering , v6966, Algorithms and Technologies
for Multispectral, Hyperspectral, and
Ultraspectral Imagery XIV, 2008.
12References
- Niemann, H. B., Atreya, S. K., Bauer, S. J.,Â
Carignan, G. R., Demick, J. E. , Frost R. L.,Â
Gautier, D., Haberman, J. A., Harpold, D. N.,Â
Hunten, D. M., Israel, G., Lunine, J. I., - Plaza, Chang. (2008). High performance computing
in remote sensing. Boca Raton, Florida CRC
Press. - Â Rosario Torres, S. (2004). Iterative algorithms
for abundance estimation on unmixing of
hyperspectral imagery. Master thesis, Electrical
and Computer Engineering Department, University
of Puerto Rico, Mayaguez Campus. - Rosario-Torres, Velez-Reyes.(2005). An algorithm
for fully constrained abundance estimation in
hyperspectral unmixingElectronic Version.
Proceedings of SPIE - The International Society
for Optical Engineering, v 5806, n PART II,
Algorithms and Technologies for Multispectral,
Hyperspectral, and Ultraspectral Imagery, 6,
711-719. - Schowengerdt. (2007). Remote sensing. Burlington,
MA Academic Press.
1 Rosario-Torres, Samuel, Velez-Reyes, Miguel,
An algorithm for fully constrained abundance
estimation in hyperspectralunmixing, Proceedings
of SPIE - The International Society for Optical
Engineering, v 5806, n PART II, Algorithms and
Technologies for Multispectral, Hyperspectral,
and Ultraspectral Imagery XI, 2005, p 711-719
2 Javier Morales, Nayda G. Santiago, and
Alejandro Fernández, An FPGA Implementation of
Image Space Reconstruction Algorithm
forHyperspectral Imaging Analysis, Proceedings
of the SPIE, Vol. 6565 65651V (2007), Algorithms
and Technologies for Multispectral,Hyperspectral,
and Ultraspectral Imagery XIII, editors Sylvia
S. Shenand Paul E. Lewis, pp, V-1 to V-12. 3
http//www.nvidia.com/object/cuda 4http//develo
per.download.nvidia.com/compute/cuda/0_8/NVIDIA_CU
DA_ Programming Guide_0.8.pdf 5http//www3.stat.
sinica.edu.tw/statistica/password.asp?vol5num1
art 5 Introduction to the Iterative Image Space
Restoration Algorithm 6 J. D. Owens, D. Luebke,
N. Govindaraju, M. Harris, J. Krüger, A. E.
Lefohn, T. J. Purcell ,A Survey of
General-Purpose Computation on Graphics Hardware,
In Proceedings in Eurographics 2005, Aug. 2005,
Dublin, Ireland, Pages 21 51. 7 David
González, Christian Sánchez, Ricardo Veguilla,
Nayda Santiago, Samuel Rosario, and Miguel Vélez,
An algorithm for fully constrained abundance
estimation in hyperspectralunmixing, Proceedings
of SPIE - The International Society for Optical
Engineering , v6966, Algorithms and Technologies
for Multispectral, Hyperspectral, and
Ultraspectral Imagery XIV, 2008.
1 Rosario-Torres, Samuel, Velez-Reyes, Miguel,
An algorithm for fully constrained abundance
estimation in hyperspectralunmixing, Proceedings
of SPIE - The International Society for Optical
Engineering, v 5806, n PART II, Algorithms and
Technologies for Multispectral, Hyperspectral,
and Ultraspectral Imagery XI, 2005, p 711-719
2 Javier Morales, Nayda G. Santiago, and
Alejandro Fernández, An FPGA Implementation of
Image Space Reconstruction Algorithm
forHyperspectral Imaging Analysis, Proceedings
of the SPIE, Vol. 6565 65651V (2007), Algorithms
and Technologies for Multispectral,Hyperspectral,
and Ultraspectral Imagery XIII, editors Sylvia
S. Shenand Paul E. Lewis, pp, V-1 to V-12. 3
http//www.nvidia.com/object/cuda 4http//develo
per.download.nvidia.com/compute/cuda/0_8/NVIDIA_CU
DA_ Programming Guide_0.8.pdf 5http//www3.stat.
sinica.edu.tw/statistica/password.asp?vol5num1
art 5 Introduction to the Iterative Image Space
Restoration Algorithm 6 J. D. Owens, D. Luebke,
N. Govindaraju, M. Harris, J. Krüger, A. E.
Lefohn, T. J. Purcell ,A Survey of
General-Purpose Computation on Graphics Hardware,
In Proceedings in Eurographics 2005, Aug. 2005,
Dublin, Ireland, Pages 21 51. 7 David
González, Christian Sánchez, Ricardo Veguilla,
Nayda Santiago, Samuel Rosario, and Miguel Vélez,
An algorithm for fully constrained abundance
estimation in hyperspectralunmixing, Proceedings
of SPIE - The International Society for Optical
Engineering , v6966, Algorithms and Technologies
for Multispectral, Hyperspectral, and
Ultraspectral Imagery XIV, 2008.