Remote Sensing : Understanding Hyperspectral Imaging - PowerPoint PPT Presentation

About This Presentation
Title:

Remote Sensing : Understanding Hyperspectral Imaging

Description:

Remote Sensing : Understanding Hyperspectral Imaging Christian S nchez L pez M todos de Investigaci n Bibliogr fica Prof. Liz M. P gan What is Hyperspectral ... – PowerPoint PPT presentation

Number of Views:198
Avg rating:3.0/5.0
Slides: 13
Provided by: Josue2
Category:

less

Transcript and Presenter's Notes

Title: Remote Sensing : Understanding Hyperspectral Imaging


1
Remote Sensing Understanding Hyperspectral
Imaging
  • Christian Sánchez López
  • Métodos de Investigación Bibliográfica
  • Prof. Liz M. Págan

2
What is Hyperspectral Imaging (HSI) ?
  • Hyperspectral images are constructed by sampling
    multiple spectral bands for each pixel or
    discrete spatial sampling location.
  • Produces a set of images, each acquired over a
    relatively narrow electromagnetic bandwidth.
  • Images contain large amounts of data.

3
Hyperspectral Imaging (HSI)
  • Technique
  • Collect image data simultaneously
  • Dozens or hundreds of narrow, adjacent spectral
    bands
  • Purpose
  • Obtain a complete reflectance spectrum for the
    region being analyzed
  • Image pixel
  • Spectral information over the hundreds of bands
    to generate a "data cube"

4
Sampling the Spectrum
5
Hyperspectral Imaging (HSI)
  • Hyperspectral Imaging, also referred to as
    Imaging Spectrometry, combines
  • conventional imaging,
  • spectroscopy, and
  • radiometry
  • to produce images for which a spectral signature
    is associated with each spatial resolution
    element (pixel)

Picture taken from http//www2.brgm.fr/mineo
6
Hyperspectral Imaging (HSI)
  • Hyperspectral sensors collect data to produce
    data cubes. These consist of the two spatial
    dimensions and a large spectral dimension.

Data Cube 1
7
Hyperspectral Imaging (HSI)
Conventional Image
Hyperspectral Image
8
Research Process
  • In order to gather the necessary information
    about Hyperspectral Imaging we used the following
    tools
  • Database searches most of the articles where
    found using this tool.
  • Internet Portal searches provide ways to search
    for books, newspaper articles and websites on the
    specific topic.
  • Research on published papers and thesis peer
    reveiwed papers provide credible sources of
    information. They are a good way to get up to
    speed quickly and efficently on the topic at
    hand.

9
Research Process
10
Conclusion
  • The process of finding information relating to
    these specific topic was not very difficult. The
    world wide web provides means to find information
    on almost anything we need. Database searches
    provide excellent results with proven resources
    including thesis, published papers and
    peer-reviewed articles. These is just an example
    of how the research process has moved from just
    going into a Library and searching for books and
    materials on a specific topic. Difficulties
    confronted in this research was gaining the
    initial knowledge on resources what are they and
    how to differentiate between good and bad
    resources.

11
References
  • El-Sheimy, Valeo, Habib. (2005). Digital terrain
    modeling acquisition, manipulation, and
    applications. Norwood, MA Artech House, Inc.
  •  Goetz, A., Vane, G., Solomon, J., Rock, B.
    (1985, June 7). Imaging spectrometry for earth
    remote sensing. Science, p1147(7).
  •  Gonzalez, D., Sanchez, C., Veguilla, R.,
    Santiago, N., Rosario-Torres, S Velez-Reyes, M.
    (2008). Abundance estimation algorithms using
    NVIDIA registered trademark CUDA trademark
    technology. Electronic Version. Proceedings of
    SPIE - The International Society for Optical
    Engineering, v 6966, Algorithms and Technologies
    for Multispectral, Hyperspectral, and
    Ultraspectral Imager, 7, 2008, p 69661E.
  •  Masalmah, Y.M. Velez-Reyes, M., Rosario-Torres,
    S. (2005). An algorithm for unsupervised
    unmixing of hyperspectral imagery using positive
    matrix factorizationElectronic Version.
    Proceedings of the SPIE - The International
    Society for Optical Engineering, v 5806, n 1, p
    703-10.
  • Morales-Morales, J.(2007). An FPGA implementation
    of the image space reconstruction algorithm for
    hyperspectral imaging analysis. Master thesis,
    Electrical and Computer Engineering Department,
    University of Puerto Rico, Mayaguez Campus.

1 Rosario-Torres, Samuel, Velez-Reyes, Miguel,
An algorithm for fully constrained abundance
estimation in hyperspectralunmixing, Proceedings
of SPIE - The International Society for Optical
Engineering, v 5806, n PART II, Algorithms and
Technologies for Multispectral, Hyperspectral,
and Ultraspectral Imagery XI, 2005, p 711-719
2 Javier Morales, Nayda G. Santiago, and
Alejandro Fernández, An FPGA Implementation of
Image Space Reconstruction Algorithm
forHyperspectral Imaging Analysis, Proceedings
of the SPIE, Vol. 6565 65651V (2007), Algorithms
and Technologies for Multispectral,Hyperspectral,
and Ultraspectral Imagery XIII, editors Sylvia
S. Shenand Paul E. Lewis, pp, V-1 to V-12. 3
http//www.nvidia.com/object/cuda 4http//develo
per.download.nvidia.com/compute/cuda/0_8/NVIDIA_CU
DA_ Programming Guide_0.8.pdf 5http//www3.stat.
sinica.edu.tw/statistica/password.asp?vol5num1
art 5 Introduction to the Iterative Image Space
Restoration Algorithm 6 J. D. Owens, D. Luebke,
N. Govindaraju, M. Harris, J. Krüger, A. E.
Lefohn, T. J. Purcell ,A Survey of
General-Purpose Computation on Graphics Hardware,
In Proceedings in Eurographics 2005, Aug. 2005,
Dublin, Ireland, Pages 21 51. 7 David
González, Christian Sánchez, Ricardo Veguilla,
Nayda Santiago, Samuel Rosario, and Miguel Vélez,
An algorithm for fully constrained abundance
estimation in hyperspectralunmixing, Proceedings
of SPIE - The International Society for Optical
Engineering , v6966, Algorithms and Technologies
for Multispectral, Hyperspectral, and
Ultraspectral Imagery XIV, 2008.
1 Rosario-Torres, Samuel, Velez-Reyes, Miguel,
An algorithm for fully constrained abundance
estimation in hyperspectralunmixing, Proceedings
of SPIE - The International Society for Optical
Engineering, v 5806, n PART II, Algorithms and
Technologies for Multispectral, Hyperspectral,
and Ultraspectral Imagery XI, 2005, p 711-719
2 Javier Morales, Nayda G. Santiago, and
Alejandro Fernández, An FPGA Implementation of
Image Space Reconstruction Algorithm
forHyperspectral Imaging Analysis, Proceedings
of the SPIE, Vol. 6565 65651V (2007), Algorithms
and Technologies for Multispectral,Hyperspectral,
and Ultraspectral Imagery XIII, editors Sylvia
S. Shenand Paul E. Lewis, pp, V-1 to V-12. 3
http//www.nvidia.com/object/cuda 4http//develo
per.download.nvidia.com/compute/cuda/0_8/NVIDIA_CU
DA_ Programming Guide_0.8.pdf 5http//www3.stat.
sinica.edu.tw/statistica/password.asp?vol5num1
art 5 Introduction to the Iterative Image Space
Restoration Algorithm 6 J. D. Owens, D. Luebke,
N. Govindaraju, M. Harris, J. Krüger, A. E.
Lefohn, T. J. Purcell ,A Survey of
General-Purpose Computation on Graphics Hardware,
In Proceedings in Eurographics 2005, Aug. 2005,
Dublin, Ireland, Pages 21 51. 7 David
González, Christian Sánchez, Ricardo Veguilla,
Nayda Santiago, Samuel Rosario, and Miguel Vélez,
An algorithm for fully constrained abundance
estimation in hyperspectralunmixing, Proceedings
of SPIE - The International Society for Optical
Engineering , v6966, Algorithms and Technologies
for Multispectral, Hyperspectral, and
Ultraspectral Imagery XIV, 2008.
12
References
  • Niemann, H. B., Atreya, S. K.,  Bauer, S. J., 
    Carignan, G. R.,  Demick, J. E. ,  Frost R. L., 
    Gautier, D.,  Haberman, J. A.,  Harpold, D. N., 
    Hunten, D. M.,  Israel, G.,  Lunine, J. I., 
  • Plaza, Chang. (2008). High performance computing
    in remote sensing. Boca Raton, Florida CRC
    Press.
  •  Rosario Torres, S. (2004). Iterative algorithms
    for abundance estimation on unmixing of
    hyperspectral imagery. Master thesis, Electrical
    and Computer Engineering Department, University
    of Puerto Rico, Mayaguez Campus.
  • Rosario-Torres, Velez-Reyes.(2005). An algorithm
    for fully constrained abundance estimation in
    hyperspectral unmixingElectronic Version.
    Proceedings of SPIE - The International Society
    for Optical Engineering, v 5806, n PART II,
    Algorithms and Technologies for Multispectral,
    Hyperspectral, and Ultraspectral Imagery, 6,
    711-719.
  • Schowengerdt. (2007). Remote sensing. Burlington,
    MA Academic Press.

1 Rosario-Torres, Samuel, Velez-Reyes, Miguel,
An algorithm for fully constrained abundance
estimation in hyperspectralunmixing, Proceedings
of SPIE - The International Society for Optical
Engineering, v 5806, n PART II, Algorithms and
Technologies for Multispectral, Hyperspectral,
and Ultraspectral Imagery XI, 2005, p 711-719
2 Javier Morales, Nayda G. Santiago, and
Alejandro Fernández, An FPGA Implementation of
Image Space Reconstruction Algorithm
forHyperspectral Imaging Analysis, Proceedings
of the SPIE, Vol. 6565 65651V (2007), Algorithms
and Technologies for Multispectral,Hyperspectral,
and Ultraspectral Imagery XIII, editors Sylvia
S. Shenand Paul E. Lewis, pp, V-1 to V-12. 3
http//www.nvidia.com/object/cuda 4http//develo
per.download.nvidia.com/compute/cuda/0_8/NVIDIA_CU
DA_ Programming Guide_0.8.pdf 5http//www3.stat.
sinica.edu.tw/statistica/password.asp?vol5num1
art 5 Introduction to the Iterative Image Space
Restoration Algorithm 6 J. D. Owens, D. Luebke,
N. Govindaraju, M. Harris, J. Krüger, A. E.
Lefohn, T. J. Purcell ,A Survey of
General-Purpose Computation on Graphics Hardware,
In Proceedings in Eurographics 2005, Aug. 2005,
Dublin, Ireland, Pages 21 51. 7 David
González, Christian Sánchez, Ricardo Veguilla,
Nayda Santiago, Samuel Rosario, and Miguel Vélez,
An algorithm for fully constrained abundance
estimation in hyperspectralunmixing, Proceedings
of SPIE - The International Society for Optical
Engineering , v6966, Algorithms and Technologies
for Multispectral, Hyperspectral, and
Ultraspectral Imagery XIV, 2008.
1 Rosario-Torres, Samuel, Velez-Reyes, Miguel,
An algorithm for fully constrained abundance
estimation in hyperspectralunmixing, Proceedings
of SPIE - The International Society for Optical
Engineering, v 5806, n PART II, Algorithms and
Technologies for Multispectral, Hyperspectral,
and Ultraspectral Imagery XI, 2005, p 711-719
2 Javier Morales, Nayda G. Santiago, and
Alejandro Fernández, An FPGA Implementation of
Image Space Reconstruction Algorithm
forHyperspectral Imaging Analysis, Proceedings
of the SPIE, Vol. 6565 65651V (2007), Algorithms
and Technologies for Multispectral,Hyperspectral,
and Ultraspectral Imagery XIII, editors Sylvia
S. Shenand Paul E. Lewis, pp, V-1 to V-12. 3
http//www.nvidia.com/object/cuda 4http//develo
per.download.nvidia.com/compute/cuda/0_8/NVIDIA_CU
DA_ Programming Guide_0.8.pdf 5http//www3.stat.
sinica.edu.tw/statistica/password.asp?vol5num1
art 5 Introduction to the Iterative Image Space
Restoration Algorithm 6 J. D. Owens, D. Luebke,
N. Govindaraju, M. Harris, J. Krüger, A. E.
Lefohn, T. J. Purcell ,A Survey of
General-Purpose Computation on Graphics Hardware,
In Proceedings in Eurographics 2005, Aug. 2005,
Dublin, Ireland, Pages 21 51. 7 David
González, Christian Sánchez, Ricardo Veguilla,
Nayda Santiago, Samuel Rosario, and Miguel Vélez,
An algorithm for fully constrained abundance
estimation in hyperspectralunmixing, Proceedings
of SPIE - The International Society for Optical
Engineering , v6966, Algorithms and Technologies
for Multispectral, Hyperspectral, and
Ultraspectral Imagery XIV, 2008.
Write a Comment
User Comments (0)
About PowerShow.com