Title: Multicriteria Scheduling: Theory and Models
1Multicriteria Scheduling Theory and Models
- Vincent TKINDT
- Laboratoire dInformatique (EA 2101)
- Dépt. Informatique - PolytechTours
- Université François-Rabelais de Tours France
- tkindt_at_univ-tours.fr
2Structure
- Theory of Multicriteria Scheduling,
- Optimality definition,
- How to solve a multicriteria scheduling problem,
- Application to a bicriteria scheduling problem,
- Considerations about the enumeration of optimal
solutions. - Some models and algorithms,
- Scheduling with intefering job sets,
- Scheduling with rejection cost.
- Solution of bicriteria single machine problem by
mathematical programming
3What is Multicriteria Scheduling?
- Multicriteria Optimization How to optimize
several conflicting criteria? - Scheduling How to determine the  optimalÂ
allocation of tasks (jobs) to resources
(machines) over time?
- Multicriteria Optimization How to optimize
several conflicting criteria? - Scheduling How to determine the  optimalÂ
allocation of tasks (jobs) to resources
(machines) over time?
- Multicriteria Scheduling
- Scheduling Multicriteria Optimization.
4Theory of Multicriteria Scheduling
- What about multicriteria optimization?
- K criteria Zi to minimize,
- The notion of optimality is defined
- by means of Pareto optimality,
- We distinguish between
- Strict Pareto optimality,
- Weak Pareto optimality.
Z2
Z1
A solution x is a strict Pareto optimum iff there
does not exist another solution y such that Zi(y)
Zi(x), ?i1,,K, with at least one strict
inequality.
A solution x is a weak Pareto optimum iff there
does not exist another solution y such that Zi(y)
lt Zi(x), ?i1,,K.
E
WE
?
5Theory of Multicriteria Scheduling
- Multicriteria scheduling (straigth extension),
- Determine one or more Pareto optimal (preferrably
strict) allocations of tasks (jobs) to resources
(machines) over time.
- General fundamental considerations,
- How to calculate a strict Pareto optimum ?
- How to calculate the best strict Pareto optimum
?
? This depends on Decision Makers preferences.
6Theory of Multicriteria Scheduling
- How can be expressed decision makers preferences?
- By means of weights (wi for criterion Zi),
- By means of goals (fex Zi ? LBUB),
- By means of bounds (Zi ?? ei),
- By means of an absolute order.
- Numerous studies can be found in the literature,
- Convex combination of criteria (Geoffrions
theorem), - e-constraint approach,
- Lexicographic approach,
- Parametric approach,
-
7Theory of Multicriteria Scheduling
- How to calculate the best strict Pareto optimum
?
8Theory of Multicriteria Scheduling
- Convex combination of criteria,
Min Si aiZi(x) st x ? S ai ? 01, Si ai 1
- Strong convex hypothesis (Geoffrions theorem).
- Discrete case supported vs non supported Pareto
optima.
Min Z1(x) st x ? S Zi ? ei, ? i2,,K
- Weak Pareto optima,
- Often used in a posteriori algorithms.
- Lexicographic approach Z1 ? Z2 ? ? ZK
9Theory of Multicriteria Scheduling
- Illustration on an example problem 1diLmax, C
- A single machine is available,
- n jobs have to be processed,
- Minimize Lmaxmaxi(Ci-di) and CSi Ci,
p1
3
2
1
C1
C2
C3
2
1
3
Machine
time
d2
d1
d3
10Theory of Multicriteria Scheduling
- Illustration on an example problem 1diLmax, C
Design of an a posteriori algorithm1
A strict Pareto optimum is calculated by means of
the e-contraint approach
- Known results
- The 1C problem is solved to optimality by
Shortest Processing Times first rule (SPT), - The 1diLmax problem is solved to optimality by
Earliest Due Date first rule (EDD), -
1 L. van Wassenhove and L.F. Gelders (1980).
Solving a bicriterion scheduling problem, EJOR,
442-48.
11Theory of Multicriteria Scheduling
- To calculate a Pareto optimum, solve the
1die(C/Lmax) problem
- Lmax ? e
- maxi(Ci-di) ? e
- Ci-di ? e, ? i1,,n
- Ci ? Di di e, ? i1,,n
12Theory of Multicriteria Scheduling
- Solve the 1diLmax problem gt Lmax value.
- Solve the 1C problem gt s0, C(s0), Lmax(s0).
- Es0, eLmax(s0)-1.
- While e gt Lmax Do
- Solve the 1Didi e C problem gt s,
- EE//s, eLmax(s)-1.
- End While.
- Return E
Lmax
Lmax(s0)
e
s
e
e
Lmax
C
C(s0)
13Theory of Multicriteria Scheduling
- Scheduling module (how to solve the 1DiC
problem),
1
2
3
3
1
2
Machine
7
0
time
D1
D2
D3
14Theory of Multicriteria Scheduling
- Candidate list based algorithm,
- This a posteriori algorithm is optimal,
- The scheduling module works in O(nlog(n)),
- There are at most n(n1)/2 non dominated criteria
vectors, - This enumeration problem is easy,
- A polynomial time algorithm for calculating a
strict Pareto optimum, - A polynomial number of non dominated criteria
vectors.
15Theory of Multicriteria Scheduling
- The enumeration of Pareto optima is a challenging
issue, - How hard is it to perform the enumeration?
- ? Complexity theory.
- How conflicting are the criteria?
- ? A priori evaluation,
- ? Algorithmic evaluation,
- ? A posteriori evaluation (experimental
evaluation).
16Theory of Multicriteria Scheduling
- From a theoretical viewpoint complexity theory,
- Originally dedicated to decision problems,
- Scheduling problems are often optimisation
problems,
17Theory of Multicriteria Scheduling
- But now what happen for multicriteria
optimisation? - We minimise K criteria Zi,
- Enumeration of strict Pareto optima,
Counting problem C Input data, or instance,
denoted by I (set DO). Question how many optimal
solutions are there regarding the objective of
problem O?
Enumeration problem E Input data, or instance,
denoted by I (set DO). Goal find the set SI the
optimal solutions regarding the objective of
problem O.
18Theory of Multicriteria Scheduling
Problems which can be solved in polynomial time
in the input size and number of solutions
Spatial complexity vs Temporal complexity,
V. Tkindt, K. Bouibede-Hocine, C. Esswein
(2007). Counting and Enumeration Complexity with
application to Multicriteria Scheduling, Annals
of Operations Research, 153215-234.
19Theory of Multicriteria Scheduling
- There are some links between classes,
- If E ? P then O ? PO and C ? FP,
- If O ? NPOC and C ? PC then E ? ENPC.
- .. in practice
- if O ? NPOC then E ? ENPC
20Theory of Multicriteria Scheduling
- A priori conflicting measure analysis on the
potential number of strict Pareto optima, - Cone dominance,
- Consider the following bicriteria / bivariable
MIP problem - Min Si ci1xi
- Min Si ci2 xi
- st
- Ax ? b
- x ? N2
x2
c1
c2
c1 and c2 are the generators of cone C
x1
21Theory of Multicriteria Scheduling
x2
x1
22Theory of Multicriteria Scheduling
- Consider the following problem 1Si uiCi, Si
viCi - The criteria can be formulated as
- Si uiCi Si Sk ui pk xki
- and
- Si viCi Si Sk vi pk xki
- with xki 1 if Jk precedes Ji
23Theory of Multicriteria Scheduling
- The generators are
- c1 u1p1,,u1pn,u2p1,,u2pn,,unpn
- and
- c2 v1p1,,v1pn,v2p1,,v2pn,,vnpn
- The cone C is defined by
- Cy ? Rn2 / c1.y 0 and c2.y 0
- If C is tight, then the number of Pareto optima
is possibly high.
c1
C
c2
24Theory of Multicriteria Scheduling
- The maximum angle between c1 and c2 is obtained
for - ui0, ?i1,,l, and ui0, ?il1,,n
- and
- vi 0, ?i1,,l, and vi0, ?il1,,n
- as the weights are non negative.
- This can be helpful to identify/generate
instances with a potentially high number of
strict Pareto optima.
25Theory of Multicriteria Scheduling
- Drawback the number of strict Pareto optima also
depends on the spreading of solutions
(constraints), - Drawback not easy to generalize to max criteria.
- Generally, the number of strict Pareto optima is
evaluated by means of an algorithmic analysis, - See for instance the 1diLmax, wCsum problem,
- But we have a bound on the number of non
dominated criteria vectors.
26Structure
- Theory of Multicriteria Scheduling,
- Optimality definition,
- How to solve a multicriteria scheduling problem,
- Application to a bicriteria scheduling problem,
- Considerations about the enumeration of optimal
solutions. - Some models and algorithms,
- Scheduling with interfering job sets,
- Scheduling with rejection cost.
- Solution of bicriteria single machine problem by
mathematical programming
27Some models and algorithms
- A classification based on model features and not
simply on machine configurations, - Scheduling with controllable data,
- Scheduling with setup times,
- Just-in-Time scheduling,
- Robust and flexible scheduling,
- Scheduling with interfering job sets,
- Scheduling with rejection costs,
- Scheduling with completion times,
- Scheduling with only due date based criteria,
- .
28Scheduling with interfering job sets
- 2 sets of jobs to schedule,
- Set A nA, evaluated by criterion ZA,
- Set B nB, evaluated by criterion ZB,
- Potentially large number of Pareto optima
(remember the cone dominance approach).
29Scheduling with interfering job sets
- Consider the 1Fl(Cmax, wCsum) problem,
- Fl(Cmax, wCsum) CAmax awCBsum
wiawi
p1p1p2p3 / w11
4
5
6
3
2
1
1
wCBsum
CAmax
1
4
5
6
Machine
0
time
WSPT on the fictitious A job and B jobs with
weights wi
30Scheduling with interfering job sets
Problem Reference Note
1diFl(Cmax,Lmax) Baker and Smith (2003) Yuan et al. (2005) Polynomial in O(nB log(nB)).
1diFl(Cmax,wCsum) Baker and Smith (2003) Polynomial in O(nB log(nB)).
1diFl(Lmax,wCsum) Baker and Smith (2003) Yuan et al. (2005) NP-hard. Polynomial for wi1.
1e(fAmax/fBmax) Agnetis et al. (2004) O(n2AnB log(nB)). At most nAnB Pareto.
1e(wCsumA/fBmax) Agnetis et al. (2004) NP-hard. Polynomial for wi1 (at most nAnB Pareto).
1die(UA/fBmax) Agnetis et al. (2004) O(nA log(nA)nB log(nB)).
1die(UA/UB) Agnetis et al. (2004) O(n2A nBn2B nA).
1diSjwUj Cheng and Juan (2006) m job sets. Strongly NP-hard.
1die(wCsumA/UB) Agnetis et al. (2004) NP-hard.
1e(CsumA/CsumB) Agnetis et al. (2004) NP-hard (at most 2n Pareto).
31Scheduling with interfering job sets
- Multiple machines problems,
Problem Reference Note
JdiZA,ZB Agnetis et al. (2000) ZA and ZB are quasi-convexe functions of the due dates. Enumerate the Pareto.
F2e(CmaxA/CmaxB) Agnetis et al. (2004) NP-hard.
O2e(CmaxA/CmaxB) Agnetis et al. (2004) NP-hard.
32Scheduling with rejection costs
- A set of n jobs to be scheduled,
- A job can be scheduled or rejected,
- Minimize a  classic criterion Z,
- Minimize the rejection cost RCSi rci,
- ? Often Fl(Z,RC)ZRC is minimized.
33Scheduling with rejection cost
- Consider the 1Fl(Csum, RC) problem,
- Fl(Csum, RC) Csum RC
i pi rci
1 1 2
2 2 4
3 4 1
4 5 5
Job i pi processing time, rci rejection
cost.
3
2
1
4
3
2
1
4
Machine
0
time
Fl23
Compute the variations in the objective function
Di Di -2-3-10-7
SPT to get the initial sequencing
34Scheduling with rejection cost
- Consider the 1Fl(Csum, RC) problem,
- Fl(Csum, RC) Csum RC
i pi rci
1 1 2
2 2 4
3 4 1
4 5 5
3
2
1
4
Machine
0
time
Fl13
Compute the variations in the objective function
Di Di -1-1---3
35Scheduling with rejection cost
- Consider the 1Fl(Csum, RC) problem,
- Fl(Csum, RC) Csum RC
i pi rci
1 1 2
2 2 4
3 4 1
4 5 5
3
4
2
1
Machine
0
time
Fl10
Compute the variations in the objective function
Di Di 01----
36Scheduling with rejection costs
Problem Reference Note
1Fl(wCsum,RC) Engels et al. (1998) Weakly NP-hard. Dyn. Prog and approx. scheme. Polynomial if wiw or pip.
1ri,precFl(wCsum,RC) Engels et al. (1998) Approximation scheme.
1diFl(Lmax,RC) Sengupta (1999) Weakly NP-hard. Dyn. Prog and approx. scheme.
1ri,di,pi contrFl(Si (Ri-wiTi-cixi),RC) Yang and Geunes (2007) Ri profit, xi compression amount, ci compression cost. NP-hard. Heuristic.
37Scheduling with rejection costs
- Multiple machines problems,
Problem Reference Note
PFl(Cmax, RC) Bartal et al. (2000) Approximation algo for the off-line case and competitive algo for the on-line case.
PpmtnFl(Cmax, RC) Seiden (2001) Competitive algorithm for the on-line case.
P,QpmtnFl(Cmax,RC) Hoogeveen et al. (2000) Weakly NP-hard. Approx. scheme.
RpmtnFl(Cmax,RC) Hoogeveen et al. (2000) Strongly NP-hard. Approx. scheme.
OpmtnFl(Cmax,RC) Hoogeveen et al. (2000) Strongly NP-hard. Approx. scheme.
38Structure
- Theory of Multicriteria Scheduling,
- Optimality definition,
- How to solve a multicriteria scheduling problem,
- Application to a bicriteria scheduling problem,
- Considerations about the enumeration of optimal
solutions. - Some models and algorithms,
- Scheduling with interfering job sets,
- Scheduling with rejection cost.
- Solution of bicriteria single machine problem by
mathematical programming
39Bicriteria scheduling and Math. Prog.
- Nous considérons le problème dordonnancement
suivant, - Le problème est noté 1di Lmax, Uw,
- n travaux,
- pi durée de traitement,
- di date de fin souhaitée,
- wi un poids associé au retard.
-
- On souhaite calculer un optimum de Pareto pour
les critères Lmax et Uw. - Lmaxmaxi(Ci-di), le plus grand retard
algébrique, - Uw Si wiUi, avec Ui1 si Cigtdi et 0 sinon,
nombre pondéré de travaux en retard. - NP-difficile (quel sens ?)
- Baptiste, Della Croce, Grosso, Tkindt (2007).
Sequencing a single machine with due dates and
deadlines an ILP-Based Approach to Solve Very
Large Instances, à paraître dans Journal of
Scheduling.
40Bicriteria scheduling and Math. Prog.
- Utilisation de lapproche e-contrainte,
- Minimiser Uw
- sc
- Lmax ? e (A)
-
- La contrainte (A) est équivalente Ã
-
- Ci ? Didi e, ?i1,,n
- Pour calculer un optimum de Pareto on résout le
problème noté 1di , Di Uw -
41Bicriteria scheduling and Math. Prog.
- Quavons-nous fait pour résoudre le problème 1di
, Di Uw ? - Partant dun modèle mathématique
- proposition dune heuristique (borne
inférieure) - mise en place de techniques de réduction de
problème - Tous ces éléments ont été intégrés dans une PSE.
42Bicriteria scheduling and Math. Prog.
- Modélisation linéaire en variables bivalentes,
- xi 1 si Ji est en avance,
- Bt i/Di?t et At i/digtt,
- Formulation indexée sur le temps (T?2n),
- Tdi,Dii
43Bicriteria scheduling and Math. Prog.
- Calcule dune borne inférieure (heuristique),
- Propriété Soit pi?pj, dj ?di, Di ?Dj, wj ?wi,
avec au moins une inégalité stricte. On a (i gtgt
j) - 1. Si i est en retard, j lest aussi,
- 2. Si j est en avance, i lest aussi.
- Algorithme basé sur le LP et la notion de  core
problem , - Mettre dans le  core problem les variables
fractionnaires, - Mettre les variables entières non dominées,
44Bicriteria scheduling and Math. Prog.
- Résoudre le  core problem à laide du MIP (5
des var), - La solution du MIP donne la LB,
- Recherche locale en O(n3) par swap de travaux en
avance et en retard.
45Bicriteria scheduling and Math. Prog.
- Preprocessing traitement visant à réduire
lespace de recherche (parfois en réduisant la
taille du problème), - Différents types de preprocessing,
- Contraintes
- - ajout de contraintes redondantes,
- - élimination de contraintes redondantes,
- -
- Variables
- - réduction des bornes,
- - fixation de variables,
- -
- On sest intéressé à des techniques de
preprocessing sur les variables.
46Bicriteria scheduling and Math. Prog.
- Une technique générale de fixation de variables,
- Basée sur la résolution de la relaxation
linéaire, - Soit LB une borne inférieure et UBlp la borne
relachée, - On sait que pour toute solution x du problème
mixte - cxUBlp Sj?HB rj xj
- avec HB lensemble des variables hors base dans
une solution donnant UBlp. - avec rj le coût réduit (négatif ou nul) associé Ã
xj - UBlp Sj?HB rj xj LB
- Sj?HB rj xj LB-UBlp
47Bicriteria scheduling and Math. Prog.
- On en déduit la condition de fixation suivante
- Si rj LB-UBlp alors xj0
- De même on peut fixer des variables à 1 en
introduisant des variables décart sj - xjsj1
- et en tenant le même raisonnement si sj est
fixé à 0 alors xj doit être fixé à 1.
48Bicriteria scheduling and Math. Prog.
- On utilise également une technique de fixation
basée sur les pseudocosts uj et lj - Soit xj une variable réelle de base du LP et on
pose - lj une binf sur la diminution unitaire du coût
si xj0 - uj une binf sur la diminution unitaire du coût
si xj1 - Si (1-xj)uj UBlp-LB alors xj0
- Si xjlj UBlp-LB alors xj1
- Pour calculer lj et uj on peut utiliser les
pénalités de Dantzig1 - 1 Dantzig (1963). Linear Programming and
Extensions, Princeton University Press,
Princeton.
49Bicriteria scheduling and Math. Prog.
- Algorithme de preprocessing,
- Résoudre le LP,
- Fixer des variables par les coûts réduits,
- Fixer des variables par les pseudocosts,
- Si létape 3 a permis de fixer des variables,
aller en (1). - ? Permet de fixer environ 95 des variables.
50Bicriteria scheduling and Math. Prog.
- Algorithme de la PSE proposée
- Preprocessing,
- Branchement sur une variable binaire,
- Choix de la variable
- La variable avec le max des pseudo-costs.
- Profondeur dabord,
- UB LP procédure de réduction,
- Si à un nœud il y a moins de 1.4 107 coefficients
non nuls on résout le sous problème directement
par le MIP.
51Bicriteria scheduling and Math. Prog.
- Quelques résultats,
- Cplex seul résout jusquà n4000 en moins de 290s
en moyenne,
G100(UB-Opt)/Opt
G100(LB-Opt)/Opt
52Bicriteria scheduling and Math. Prog.
- Pas de résultat sur lénumération des optima de
Pareto, - Approche testée sur un autre problème
dordonnancement1, - Le problème F2did, d unknown d, U,
- Le calcul dun optimum de Pareto se fait jusquÃ
n3000 (Cplex limité à n2000 et la litérature Ã
n900), - On fixe environ 85 des variables.
- Lénumération des (n1) optima de Pareto strict
se fait jusquà n500 en moins de 800s. - 1 Tkindt, Della Croce, Bouquard (2007).
Enumeration of Pareto Optima for a Flowshop
Scheduling Problem with Two Criteria, Informs
JOC, 19(1)64-72.
53Now whats going on?
- Investigation of structural properties of the
Pareto set for scheduling problems, - How to quickly calculate a Pareto optimum
starting with a known one? - Generalized dominance conditions,
- Measuring the conflictness of criteria from cone
dominance to the complexity of counting problems, - Complexity of exponential algorithms,
-
54Now whats going on?
- Investigation of emerging models,
- Scheduling with interfering job sets,
- Scheduling with rejection costs,
- Scheduling for new orders,
- Combined models scheduling with rejection costs
and new orders,
55Now whats going on?
- Industrial applications,
- Are often multicriteria by nature,
- Practical application of theoretical models.
56You want to know more?
V. Tkindt, JC. Billaut (2006). Multicriteria
Scheduling Theory, Models and Algorithms.
Springer.