Feature Integration Theory Visual Search Evidence - PowerPoint PPT Presentation

1 / 43
About This Presentation
Title:

Feature Integration Theory Visual Search Evidence

Description:

Feature Integration Theory Visual Search Evidence How very simple interactions between people can lead to global effects. I&S D.J. Aks 11/7/02 Find: Conjunction ... – PowerPoint PPT presentation

Number of Views:569
Avg rating:3.0/5.0
Slides: 44
Provided by: Debor57
Category:

less

Transcript and Presenter's Notes

Title: Feature Integration Theory Visual Search Evidence


1
Feature Integration TheoryVisual Search Evidence
How very simple interactions between people can
lead to global effects. IS D.J. Aks 11/7/02
2
What guides eye-movements during complicated
visual search?
3
Find
4
(No Transcript)
5
(No Transcript)
6
Look for the red L
L
L
L
L
L
7
L
L
L
L
L
L
L
L
L
8
Feature search is easy!
  • Fast (300ms)
  • Parallel (0-10ms/item)
  • No attention needed

500
400
300
0 ms/item
5
10
15
of items
9
Conjunction Search
  • Find...combination of features
  • 2 orientations (particular arrangement)
  • Find L among Ts

T
T
L
T
T
10
T
T
T
T
T
T
T
T
T
L
T
T
T
11

12
T
T
T
T
L
T
T
T
T
T
T
T
T
13
Conjunction search is hard!
  • Slower
  • Sequential
  • Focused attention needed

Conjunction
40 ms/item
700
500
Feature
0 ms/item
300
5
10
15
of items
14
  • Feature search is easy
  • Fast (300ms)
  • Parallel (lt10ms/item)
  • No attention needed
  • Conjunction search is difficult
  • Slow (gt500ms)
  • Serial (gt10ms/item)
  • Attention needed

15
(No Transcript)
16
(No Transcript)
17
What guides search?
  • Environmental information.

18
(No Transcript)
19
(No Transcript)
20
What guides search?
  • Environmental information.
  • Internal cognitive process
  • Attention.
  • Memory?
  • Deterministic Process Self-Organized
    Criticality (SOC)?

21
Visual Search Task
Find the upright
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
22
Model
  • Hebb, 1969 Rummelhardt McClelland, 1985
  • Neuronal interactions ---gt

implicit guidance
Could eye movements be described by a simple set
of neuronal interaction rules (e.g., SOC) that
produce 1/f behavior?
23
Spectral analysis Fast-Fourier Transform (FFT)
Power vs. Frequency Regression slope power
exponent f a
f -2 1/ f 2 Brown noise
24
1/f 0 noise -- flat spectrum no correlation
across data points
White Noise
Pink Noise
1/f noise --shallow slope extremely long term
correlation
Brown Noise
1/f 2 noise-- steep slope short-term
correlation.
25
Power Spectra on raw fixations
???????
26
Summary of results
  • Sequence of
  • Absolute eye positions --gt 1/f brown noise
  • Short-term memory.
  • Differences-between-fixations --gt 1/f pink
    noise
  • Longer-term memory.

27
Simple set of SOC rules..
  • For Z(x,y) gt Zcr
  • Z(x,y) -gt Z(x,y) - 4
  • Z(x 1,y)-gt Z(x 1,y) 1
  • Z(x,y 1) -gt Z(x,y 1) 1


can produce
  • Complex effective search

28
Mainzer, K. (1997). Thinking in complexity The
complex dynamics of matter, mind mankind.
Berlin Springer. Pg. 128
29
Palmer, S. (1999). Vision Science Photons to
phenomenology. Boston MIT.
30
LPN
Palmer, S. (1999). Vision Science Photons to
phenomenology. Boston MIT.
31
CONCLUSIONS
  • There is memory across eye-movements!
  • Neural SOC model --gt 1/f relative eye-movements.
  • Simple self-organizing system--gt effective search

32
http//psychology.uww.edu/Aks/papers/AZS01.ppt
  • Aks, D. J. Zelinsky G. Sprott J. C. (2002).
    Memory Across Eye-Movements 1/f Dynamic in
    Visual Search. Nonlinear Dynamics, Psychology and
    Life Sciences, 6 (1).

33
Bluebird contributed by www.Sierra foothill.org
34
Refs
References Bak, P. (1996). How nature works the
science of self-organized criticality. New York
Springer-Verlag. Bak, P., Tang, C. (1989).
Earthquakes as a self-organized critical
phenomenon. Journal of Geophysics Research -
Solar. Earth Planet, 94, 15635-15637. Bak, P.,
Tang, C., Wiesenfeld, K. (1987).
Self-organized criticality An explanation of
1/f noise. Physical Review Letters, 59,
381-384. Bak, P., Tang, C., Wiesenfeld, K.
(1988). Self-organized criticality. Physical
Review A, 38, 364-374. Ellis, S. R., Stark, L.
(1986). Statistical dependency in visual
scanning. Human Factors, 28(4),
421-438. Gilden, D. L. (1996). Fluctuations in
the time required for elementary decisions.
Psychological Science, 8 (4), 296302.
35
Gilden, D. L., Thornton, T., Mallon, M. (1995).
1/f noise in human cognition. Science, 267,
1837-1839. Horowitz, T.S. Wolfe, J. M. (1998).
Visual Search has no memory. Nature, 357, 575-577.
Irwin, D. E. (1993). Memory for spatial position
across saccadic eye movements. In G. dYdewalle
J.V. Van Rensbergen (Eds.), Perception and
Cognition. Irwin D. E., (1996). Integration
and accumulation of information across saccadic
eye movements. In Inui, T., McLelland, J. L.
(Eds., Attention and performance XVI
Information integration in perception and
communication(pp. 125-155). London MIT
Press. Jeffrey, H. J. (1992). Chaos game
visualization of sequences. Computers
Graphics, 16, 25-33. Jonides, J., Irwin, D. E.,
Yantis, S. (1981). Integrating visual
information from successive fixations. Science,
215, 192-194.
36
Kelso, S. (1992). Dynamic Patterns. Cambridge
MIT Press. Klein R. (1988). Inhibitory tagging
system facilitates visual search. Nature, 334,
430-431. Klein R. (1980). Does oculomotor
readiness mediate cognitive control of visual
attention? In R.S. Nickerson (Ed.), Attention
and Performance VIII, (pp.259-276). Hillsdale,
N.J. Erlbaum. Klein R. MacInnes, W.J. (1999).
Inhibition of return is a foraging facilitator in
visual search. Psychological Science, 10,
346-352. Rensink, R., ORegan,J.K., Clark,J.J.
(1997). To see or not to see The need for
attention to perceive changes in scenes.
Psychological Science, 8, 368-373. Krendel, E.
S., Wodinsky, J. (1960). Search in an
unstructured visual field. Journal of the
Optical Society of America, 50, 562-568.
Kristjansson, A. (2000). In search of
Remembrance Evidence for memory in visual
search. Psychological Science, 11(4), 328-332.
37
Mainzer, K. (1997). Thinking in complexity The
complex dynamics of matter, mind mankind.
Berlin Springer. Mandelbrot, B. B. (1982). The
fractal geometry of nature. SF Freeman. Matin,
L. (1974). Saccadic supression A review and
analysis. Psychological Bulletin, 81,
899-917. Maylor, E. (1985). Facilitatory and
inhibitory components of orienting in visual
space. In M.I. Posner B.B. Marin (Eds.),
Attention and performance XI (pp. 189-204).
Hillsdale NJ Erlbaum. Maylor, E. A., Hockey,
R. (1985). Inhibitory component of externally
controlled covert orienting in visual space.
Journal of Experimental Psychology Human
Perception Performance, 11, 777-787. Megaw.
E.D. Richardson, J. (1979). Target uncertainty
and visual scanning strategies. Human Factors,
21, 303-315. Miller, S. L., Miller, W. M.,
McWhorter, P. J. (1993). Extremal dynamics A
unifying physical explanation of fractals, 1/f
noise and activated processes. Journal of
Applied Physics, 73, 2617-2628.
38
Peak, D., Frame, M. (1994). Chaos Under
Control The Art and Science of Complexity. New
York W. H. Freeman and Co.. Scinto, L.,
Pillalamarri, R., Karsh, R. (1986). Cognitive
strategies for visual search. Acta Psychologica,
62, 263-292. Sprott, J. C., Rowlands, G.
(1995). Chaos Data Analyzer. Raleigh, NC Physics
Academic Sofware (American Institute of
Physics). Stassinopoulos, D., Bak, P. (1995).
Democratic Reinforcement. A principle for Brain
function. Physical Review E, 51,
5033. Treisman, A., Gelade, G. (1988). A
feature integration theory of attention.
Cognitive Psychology, 12, 97-136. Watson, A. B.
(1987). Efficiency of an image code based on
human vision. Journal of the Optical Society of
America, A 4 (12), 2401-2417. Wolfe, J. M.
(1994). Guided search 2.0 A revised model of
visual search. Psychonomic Bulletin Review 1,
202-238.
39
(No Transcript)
40
(No Transcript)
41
(No Transcript)
42
(No Transcript)
43
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com