Title: Feature Integration Theory Visual Search Evidence
1Feature Integration TheoryVisual Search Evidence
How very simple interactions between people can
lead to global effects. IS D.J. Aks 11/7/02
2What guides eye-movements during complicated
visual search?
3Find
4(No Transcript)
5(No Transcript)
6 Look for the red L
L
L
L
L
L
7L
L
L
L
L
L
L
L
L
8Feature search is easy!
- Fast (300ms)
- Parallel (0-10ms/item)
- No attention needed
500
400
300
0 ms/item
5
10
15
of items
9Conjunction Search
- Find...combination of features
- 2 orientations (particular arrangement)
- Find L among Ts
-
T
T
L
T
T
10T
T
T
T
T
T
T
T
T
L
T
T
T
11 12T
T
T
T
L
T
T
T
T
T
T
T
T
13Conjunction search is hard!
- Slower
- Sequential
- Focused attention needed
Conjunction
40 ms/item
700
500
Feature
0 ms/item
300
5
10
15
of items
14- Feature search is easy
- Fast (300ms)
- Parallel (lt10ms/item)
- No attention needed
- Conjunction search is difficult
- Slow (gt500ms)
- Serial (gt10ms/item)
- Attention needed
15(No Transcript)
16(No Transcript)
17What guides search?
- Environmental information.
18(No Transcript)
19(No Transcript)
20What guides search?
- Environmental information.
- Internal cognitive process
- Attention.
- Memory?
- Deterministic Process Self-Organized
Criticality (SOC)?
21Visual Search Task
Find the upright
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
22Model
- Hebb, 1969 Rummelhardt McClelland, 1985
-
- Neuronal interactions ---gt
implicit guidance
Could eye movements be described by a simple set
of neuronal interaction rules (e.g., SOC) that
produce 1/f behavior?
23Spectral analysis Fast-Fourier Transform (FFT)
Power vs. Frequency Regression slope power
exponent f a
f -2 1/ f 2 Brown noise
241/f 0 noise -- flat spectrum no correlation
across data points
White Noise
Pink Noise
1/f noise --shallow slope extremely long term
correlation
Brown Noise
1/f 2 noise-- steep slope short-term
correlation.
25Power Spectra on raw fixations
???????
26Summary of results
- Sequence of
- Absolute eye positions --gt 1/f brown noise
- Short-term memory.
- Differences-between-fixations --gt 1/f pink
noise - Longer-term memory.
27Simple set of SOC rules..
- For Z(x,y) gt Zcr
- Z(x,y) -gt Z(x,y) - 4
- Z(x 1,y)-gt Z(x 1,y) 1
- Z(x,y 1) -gt Z(x,y 1) 1
can produce
28Mainzer, K. (1997). Thinking in complexity The
complex dynamics of matter, mind mankind.
Berlin Springer. Pg. 128
29Palmer, S. (1999). Vision Science Photons to
phenomenology. Boston MIT.
30LPN
Palmer, S. (1999). Vision Science Photons to
phenomenology. Boston MIT.
31CONCLUSIONS
- There is memory across eye-movements!
- Neural SOC model --gt 1/f relative eye-movements.
- Simple self-organizing system--gt effective search
32http//psychology.uww.edu/Aks/papers/AZS01.ppt
- Aks, D. J. Zelinsky G. Sprott J. C. (2002).
Memory Across Eye-Movements 1/f Dynamic in
Visual Search. Nonlinear Dynamics, Psychology and
Life Sciences, 6 (1).
33Bluebird contributed by www.Sierra foothill.org
34Refs
References Bak, P. (1996). How nature works the
science of self-organized criticality. New York
Springer-Verlag. Bak, P., Tang, C. (1989).
Earthquakes as a self-organized critical
phenomenon. Journal of Geophysics Research -
Solar. Earth Planet, 94, 15635-15637. Bak, P.,
Tang, C., Wiesenfeld, K. (1987).
Self-organized criticality An explanation of
1/f noise. Physical Review Letters, 59,
381-384. Bak, P., Tang, C., Wiesenfeld, K.
(1988). Self-organized criticality. Physical
Review A, 38, 364-374. Ellis, S. R., Stark, L.
(1986). Statistical dependency in visual
scanning. Human Factors, 28(4),
421-438. Gilden, D. L. (1996). Fluctuations in
the time required for elementary decisions.
Psychological Science, 8 (4), 296302.
35Gilden, D. L., Thornton, T., Mallon, M. (1995).
1/f noise in human cognition. Science, 267,
1837-1839. Horowitz, T.S. Wolfe, J. M. (1998).
Visual Search has no memory. Nature, 357, 575-577.
Irwin, D. E. (1993). Memory for spatial position
across saccadic eye movements. In G. dYdewalle
J.V. Van Rensbergen (Eds.), Perception and
Cognition. Irwin D. E., (1996). Integration
and accumulation of information across saccadic
eye movements. In Inui, T., McLelland, J. L.
(Eds., Attention and performance XVI
Information integration in perception and
communication(pp. 125-155). London MIT
Press. Jeffrey, H. J. (1992). Chaos game
visualization of sequences. Computers
Graphics, 16, 25-33. Jonides, J., Irwin, D. E.,
Yantis, S. (1981). Integrating visual
information from successive fixations. Science,
215, 192-194.
36 Kelso, S. (1992). Dynamic Patterns. Cambridge
MIT Press. Klein R. (1988). Inhibitory tagging
system facilitates visual search. Nature, 334,
430-431. Klein R. (1980). Does oculomotor
readiness mediate cognitive control of visual
attention? In R.S. Nickerson (Ed.), Attention
and Performance VIII, (pp.259-276). Hillsdale,
N.J. Erlbaum. Klein R. MacInnes, W.J. (1999).
Inhibition of return is a foraging facilitator in
visual search. Psychological Science, 10,
346-352. Rensink, R., ORegan,J.K., Clark,J.J.
(1997). To see or not to see The need for
attention to perceive changes in scenes.
Psychological Science, 8, 368-373. Krendel, E.
S., Wodinsky, J. (1960). Search in an
unstructured visual field. Journal of the
Optical Society of America, 50, 562-568.
Kristjansson, A. (2000). In search of
Remembrance Evidence for memory in visual
search. Psychological Science, 11(4), 328-332.
37 Mainzer, K. (1997). Thinking in complexity The
complex dynamics of matter, mind mankind.
Berlin Springer. Mandelbrot, B. B. (1982). The
fractal geometry of nature. SF Freeman. Matin,
L. (1974). Saccadic supression A review and
analysis. Psychological Bulletin, 81,
899-917. Maylor, E. (1985). Facilitatory and
inhibitory components of orienting in visual
space. In M.I. Posner B.B. Marin (Eds.),
Attention and performance XI (pp. 189-204).
Hillsdale NJ Erlbaum. Maylor, E. A., Hockey,
R. (1985). Inhibitory component of externally
controlled covert orienting in visual space.
Journal of Experimental Psychology Human
Perception Performance, 11, 777-787. Megaw.
E.D. Richardson, J. (1979). Target uncertainty
and visual scanning strategies. Human Factors,
21, 303-315. Miller, S. L., Miller, W. M.,
McWhorter, P. J. (1993). Extremal dynamics A
unifying physical explanation of fractals, 1/f
noise and activated processes. Journal of
Applied Physics, 73, 2617-2628.
38 Peak, D., Frame, M. (1994). Chaos Under
Control The Art and Science of Complexity. New
York W. H. Freeman and Co.. Scinto, L.,
Pillalamarri, R., Karsh, R. (1986). Cognitive
strategies for visual search. Acta Psychologica,
62, 263-292. Sprott, J. C., Rowlands, G.
(1995). Chaos Data Analyzer. Raleigh, NC Physics
Academic Sofware (American Institute of
Physics). Stassinopoulos, D., Bak, P. (1995).
Democratic Reinforcement. A principle for Brain
function. Physical Review E, 51,
5033. Treisman, A., Gelade, G. (1988). A
feature integration theory of attention.
Cognitive Psychology, 12, 97-136. Watson, A. B.
(1987). Efficiency of an image code based on
human vision. Journal of the Optical Society of
America, A 4 (12), 2401-2417. Wolfe, J. M.
(1994). Guided search 2.0 A revised model of
visual search. Psychonomic Bulletin Review 1,
202-238.
39(No Transcript)
40(No Transcript)
41(No Transcript)
42(No Transcript)
43(No Transcript)