Properties of Dielectrics - PowerPoint PPT Presentation

About This Presentation
Title:

Properties of Dielectrics

Description:

Lecture 6.0 Properties of Dielectrics Dielectric use in Silicon Chips Capacitors On chip On Circuit Board Insulators Transistor gate Interconnects Materials Oxides ... – PowerPoint PPT presentation

Number of Views:570
Avg rating:3.0/5.0
Slides: 32
Provided by: Ter61
Learn more at: https://my.che.utah.edu
Category:

less

Transcript and Presenter's Notes

Title: Properties of Dielectrics


1
Lecture 6.0
  • Properties of Dielectrics

2
Dielectric use in Silicon Chips
  • Capacitors
  • On chip
  • On Circuit Board
  • Insulators
  • Transistor gate
  • Interconnects
  • Materials
  • Oxides
  • SiO2
  • Boro-Silicate Glass
  • Nitrides
  • BN
  • polymers

3
Importance of Dielectrics to Silicon Chips
  • Size of devices
  • Electron Tunneling dimension
  • Chip Cooling- Device Density
  • Heat Capacity
  • Thermal Conductivity
  • Chip Speed
  • Capacitance in RC interconnects

4
Band theory of Dielectrics
  • Forbidden ZoneEnergy Gap-LARGE

Conduction Band
Valence Band
5
Difference between Semiconductors and Dielectrics
kBT 0.0257 eV at 298K
Material Eg(eV)
Ge 0.67
Si 1.12
GaAs 1.43
SiO2 8
UO2 5.2
Ga2O3 4.6
Fe2O3 3.1
ZnO 3.2
NiO 4.2
Al2O3 8
6
Fermi-Dirac Probability Distribution for electron
energy, E
  • Probability, F(E)
  • (eE-Ef/kBT1)-1
  • Ef is the
  • Fermi Energy

7
Number of Occupied States
Density of States
Fermi-Dirac
Tgt1000K only
8
Probability of electrons in Conduction Band
  • Lowest Energy in CB
  • E-Ef ? Eg/2
  • Probability in CB
  • F(E) (expE-Ef/kBT 1)-1 )
  • (expEg/2kBT 1)-1
  • ? exp-Eg/2kBT for Eggt1 eV _at_ 298K
  • exp-(4eV)/2kBT exp-100 _at_ 298K

kBT 0.0257 eV at 298K
9
Intrinsic Conductivity of Dielectric
  • Charge Carriers
  • Electrons
  • Holes
  • Ions, Mi, O-2
  • ? ne e ?e nh e ?h
  • electrons holes
  • ? ? ne e (?e ?h)
  • ne ? C exp-Eg/2kBT

10
Non-Stoichiometric Dielectrics
  • Metal Excess
  • M1x O
  • Metal with Multiple valence
  • Metal Deficiency
  • M1-x O
  • Metal with Multiple valence
  • Reaction Equilibrium
  • Keq? (PO2)x/2

3
4
2
3
11
Density Changes with Po2
SrTi1-xO3
12
Non-Stoichiometric Dielectrics
Excess M1x O
Deficient M1-x O
13
Non-Stoichiometric Dielectrics
Kihe- KFOiVO
Conductivity ?f(Po2 ) Density f(Po2 )
14
Dielectric Conduction due to Non-stoichiometry
  • N-type P-type

15
Dielectric Intrinsic Conduction due to
Non-stoichiometry
  • N-type P-type

h
h
Excess Zn1xO
Deficient Cu2-xO
16
Extrinsic Conductivity
  • Donor Doping Acceptor Doping
  • n-type p-type

Ed -me e4/(8 (??o)2 h2) EfEg-Ed/2
EfEgEa/2
17
Extrinsic Conductivity of Non-stoichiometry oxides
  • Acceptor Doping
  • p-type

p 2(2? mh kBT/h2)3/2 exp(-Ef/kBT)
Law of Mass Action, Nipindpd or nndn _at_ 10 atom
Li in NiO conductivity increases by 8 orders
of magnitude _at_ 10 atom Cr in NiO no change in
conductivity
18
Capacitance
C??oA/d ?C/Co ?1?e ?e electric
susceptibility
19
Polarization
P ? ?e E ??? ?e atomic
polarizability Induced polarization P(N/V)q?
20
Polar regions align with E field
P(N/V) ? Eloc ?i(Ni/V) ?i3 ?o (?-1)/(?2)
21
Local E Field
Local Electric Field ElocE E E due to
surrounding dipoles Eloc(1/3)(?2)E
22
Ionic Polarization
PPePi Pe electronic Pi ionic Pi(N/V)eA
23
Thermal vibrations prevent alignment with E field
24
Polar region follows E field
???? ?opt (Vel/c)2 ?opt n2 nRefractive index
25
Dielectric Constant
Material ?(?0) ?optn2
Diamond 5.68 5.66
NaCl 5.90 2.34
LiCl 11.95 2.78
TiO2 94 6.8
Quartz(SiO2) 3.85 2.13
26
Resonant Absorption/dipole relaxation
Dielectric Constant imaginary number ? real
part dielectric storage ? imaginary
part dielectric loss ?o natural frequency
27
Dipole Relaxation
  • Resonant frequency,?o
  • Relaxation time, ?

28
Relaxation Time, ?
29
Dielectric Constant vs. Frequency
30
Avalanche Breakdown
31
Avalanche Breakdown
Like nuclear fission
Write a Comment
User Comments (0)
About PowerShow.com