Title: Properties of Dielectrics
1Lecture 6.0
- Properties of Dielectrics
2Dielectric use in Silicon Chips
- Capacitors
- On chip
- On Circuit Board
- Insulators
- Transistor gate
- Interconnects
- Materials
- Oxides
- SiO2
- Boro-Silicate Glass
- Nitrides
- BN
- polymers
3Importance of Dielectrics to Silicon Chips
- Size of devices
- Electron Tunneling dimension
- Chip Cooling- Device Density
- Heat Capacity
- Thermal Conductivity
- Chip Speed
- Capacitance in RC interconnects
4Band theory of Dielectrics
- Forbidden ZoneEnergy Gap-LARGE
Conduction Band
Valence Band
5Difference between Semiconductors and Dielectrics
kBT 0.0257 eV at 298K
Material Eg(eV)
Ge 0.67
Si 1.12
GaAs 1.43
SiO2 8
UO2 5.2
Ga2O3 4.6
Fe2O3 3.1
ZnO 3.2
NiO 4.2
Al2O3 8
6Fermi-Dirac Probability Distribution for electron
energy, E
- Probability, F(E)
- (eE-Ef/kBT1)-1
- Ef is the
- Fermi Energy
7Number of Occupied States
Density of States
Fermi-Dirac
Tgt1000K only
8Probability of electrons in Conduction Band
- Lowest Energy in CB
- E-Ef ? Eg/2
- Probability in CB
- F(E) (expE-Ef/kBT 1)-1 )
- (expEg/2kBT 1)-1
- ? exp-Eg/2kBT for Eggt1 eV _at_ 298K
- exp-(4eV)/2kBT exp-100 _at_ 298K
kBT 0.0257 eV at 298K
9Intrinsic Conductivity of Dielectric
- Charge Carriers
- Electrons
- Holes
- Ions, Mi, O-2
- ? ne e ?e nh e ?h
- electrons holes
- ? ? ne e (?e ?h)
- ne ? C exp-Eg/2kBT
10Non-Stoichiometric Dielectrics
- Metal Excess
- M1x O
- Metal with Multiple valence
- Metal Deficiency
- M1-x O
- Metal with Multiple valence
- Reaction Equilibrium
- Keq? (PO2)x/2
3
4
2
3
11Density Changes with Po2
SrTi1-xO3
12Non-Stoichiometric Dielectrics
Excess M1x O
Deficient M1-x O
13Non-Stoichiometric Dielectrics
Kihe- KFOiVO
Conductivity ?f(Po2 ) Density f(Po2 )
14Dielectric Conduction due to Non-stoichiometry
15Dielectric Intrinsic Conduction due to
Non-stoichiometry
h
h
Excess Zn1xO
Deficient Cu2-xO
16Extrinsic Conductivity
- Donor Doping Acceptor Doping
- n-type p-type
Ed -me e4/(8 (??o)2 h2) EfEg-Ed/2
EfEgEa/2
17Extrinsic Conductivity of Non-stoichiometry oxides
p 2(2? mh kBT/h2)3/2 exp(-Ef/kBT)
Law of Mass Action, Nipindpd or nndn _at_ 10 atom
Li in NiO conductivity increases by 8 orders
of magnitude _at_ 10 atom Cr in NiO no change in
conductivity
18Capacitance
C??oA/d ?C/Co ?1?e ?e electric
susceptibility
19Polarization
P ? ?e E ??? ?e atomic
polarizability Induced polarization P(N/V)q?
20Polar regions align with E field
P(N/V) ? Eloc ?i(Ni/V) ?i3 ?o (?-1)/(?2)
21Local E Field
Local Electric Field ElocE E E due to
surrounding dipoles Eloc(1/3)(?2)E
22Ionic Polarization
PPePi Pe electronic Pi ionic Pi(N/V)eA
23Thermal vibrations prevent alignment with E field
24Polar region follows E field
???? ?opt (Vel/c)2 ?opt n2 nRefractive index
25Dielectric Constant
Material ?(?0) ?optn2
Diamond 5.68 5.66
NaCl 5.90 2.34
LiCl 11.95 2.78
TiO2 94 6.8
Quartz(SiO2) 3.85 2.13
26Resonant Absorption/dipole relaxation
Dielectric Constant imaginary number ? real
part dielectric storage ? imaginary
part dielectric loss ?o natural frequency
27Dipole Relaxation
28Relaxation Time, ?
29Dielectric Constant vs. Frequency
30Avalanche Breakdown
31Avalanche Breakdown
Like nuclear fission