Optimal probing strategies with applications to Biomolecular NMR - PowerPoint PPT Presentation

1 / 35
About This Presentation
Title:

Optimal probing strategies with applications to Biomolecular NMR

Description:

Optimal probing strategies with applications to Biomolecular NMR Protein NMR Spectroscopy One dimensional spectrum Optimal Control in Presence of Relaxation ... – PowerPoint PPT presentation

Number of Views:82
Avg rating:3.0/5.0
Slides: 36
Provided by: AnneW151
Category:

less

Transcript and Presenter's Notes

Title: Optimal probing strategies with applications to Biomolecular NMR


1
Optimal probing strategies with applications to
Biomolecular NMR
2
Protein NMR Spectroscopy
MSSRKVSRAHYDEDELASAANMSLVAEGHFRGMKELLSTMDLDTDANTIP
ELKERAHMLCARFLGGAWKTVPLEHLRISRIKGGMSNMLFLCRLSEVYPP
IRNEPNKVLLRVYFNPETESHLVAESVIFTLLSERHLGPKLYGIFSGGRL
EEYIPSRPLSCHEISLAHMSTKIAKRVAKVHQLEVPIWE
H
R
H
O
C
C
N
C
C
C
N
N
H
R
O
H
H
3
(No Transcript)
4
One dimensional spectrum
5
(No Transcript)
6
(No Transcript)
7
Random collisions with solvent molecules causes
stochastic tumbling of the protein molecules
8
(No Transcript)
9
Optimal Control in Presence of Relaxation
10
Constrained Bilinear Systems
11
Relaxation Optimized Pulse Elements (ROPE)
12
(No Transcript)
13
(No Transcript)
14
Experimental Results
Khaneja, Reiss, Luy, Glaser JMR(2003)
15
Comparison
S
x
16
Cross-Correlated Relaxation
17
Optimal control of spin dynamics in the presence
of Cross-correlated Relaxation









18
Khaneja et. al. Proc. Natl. Acad. Sci., 2003
19
(No Transcript)
20
(No Transcript)
21
Proc. Natl. Acad. Sci. , Nov. 2003
22
Broadband Control









23
Broadband Control
24
(No Transcript)
25
(No Transcript)
26
Experimental Results
T 271K J 193 Hz Proton Freq 750MHz Ka 193
Hz Kc .75 Ka Amax 67 J
Khaneja et. al. PNAS (2004)
27
Groel Protein 800KDa
Room Temperature J 93 Hz Proton Freq
750Mhz Ka 446 Hz Kc 326 Hz
28
Quadratic Control Systems and Semi-definite
Programming
29
Optimal control in solid-state NMR
Challenges Powder Samples Sample
spinning/oriented samples Inhomogeneity Sample
heating Specific transfers in complicated spin
systems
30
Optimal control in biological solid-state NMR
31
Optimal Hamiltonian Identification
Find optimal ui(t) such that entropy in system
Hamiltonian is minimized at end of certain time T
32
Intelligent Probing
Intelligent Probing
If output Y can be observed, choose n questions
x1, x2,, xn sequentially such that entropy of
channel is minimized. Each ci is characterized by
Pi ( y x )
33
Collaborators
Steffen Glaser Burkhard Luy Frank Kramer Timo
Reiss Kyryl Kobzar Gerhard Wagner Dominique
Frueh Takuhiro Ito Niels Nielsen Astrid
Sivertsen Cindie Kehlet Morten Bjerring
Technische Universitaet Muenchen
Harvard Medical School
University of Aarhus
34
Haidong Yuan Dionisis Stefanatos Brent Pryor Dan
Iancu Andrew Johnson Navin Khaneja Jr-Shin Li
NSF Career, Sloan, DARPA, AFOSR
35
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com