Title: Prezentacja programu PowerPoint
1Anomalous Transport Bad Honnef, 12th - 16th July,
2006
METHODS OF MEASURING SUBDIFFUSION PARAMETERS
Tadeusz Kosztolowicz
Institute of Physics, Swietokrzyska Academy,
Kielce, Poland
2T. Kosztolowicz, Measuring subdiffusion parameters
- Introduction.
- Measuring subdiffusion parameters
- a) In the system with pure subdiffusion
- Anomalous time evolution of near-membrane
layers - b) In the subdiffusive system with chemical
reactions - Anomalous time evolution of reaction front
- c) In electrochemical system
- Anomalous impedance
- Biological application
- Transport of organic acids and salts in the tooth
enamel - Final remarks
-
3Subdiffusion
- subdiffusion parameter
- subdiffusion coefficient
Subdiffusion equation
4Measuring subdiffusion parameters
T. Kosztolowicz, K. Dworecki, S. Mrówczynski, PRL
94, 170602 (2005)
Schematic view of the membrane system
5Near-membrane layer (0,?)
Initial condition
6Boundary conditions at the thin membrane
1.
2.
?
or
?
7In the long time approximation
8The experimentally measured thickness of
near-membrane layer ? as a function of time t for
glucose with ?0.05 (?), ?0.08 (?), and ?0.12
(?) and for sucrose with ?0.08 (?). The solid
lines represent the power function At0.45.
9Transport of glucose and sucrose in agarose gel
For glucose
A 0.091 0.004 for ? 0.05, ? 0.45 A
0.081 0.004 for ? 0.08, ? 0.45 A 0.071
0.004 for ? 0.12, ? 0.45
? 0.90, D0.90 (9.8 1.0) ? 104 mm2/s0.90
For sucrose
A 0.064 0.003 for ? 0.08, ? 0.45
? 0.90, D0.90 (6.3 0.9) ? 104 mm2/s0.90
10?P ?/A . The line represents the function
t0.45.
11MEASUREMENT IN NON-TRANSPARENT MEDIUM
theory
T. Kosztolowicz, AIP 800 (2005)
experiment
K. Dworecki, Physica A 359, 24 (2006)
PEG2000 in polyprophylene membrane, 180A pore
size, 9x109 pores/cm2
12Subdiffusion-reaction system
CA(x,0) C0AH(-x)
CB(x,0) C0BH(x)
13The subdiffusion-reaction equations
14Subdiffusion-reaction system
15Time evolution of reaction front in subdiffusive
system
1. D?A D?B
S.B. Yuste, L. Acedo, K. Lindenberg, PRE 69,
036126 (2004)
T. Kosztolowicz, K. Lewandowska cond-mat/0603139
(2006) Phys. Rev. E (submitted)
2. D?A? D?B , D?A, D?B gt 0
T. Kosztolowicz, K. Lewandowska Acta Phys. Pol.
37, 1571 (2006)
3. D?A gt D?B 0
16The schematic view of the tooth enamel
The dotted line represents the concentration of
static hydroxyapatite Ca5(PO4)3, the dashed one
the concentration of organic acid HB.
17Lesion depth versus time
The squares represent experimental data (J.
Featherstone et al., Arch. Oral Biol. 24, 101
(1979) ), solid line is the plot of the power
function xf 0.39 t 0.32 . Since xf D?f t ?/2
, we obtain ? 0.64.
18DIFFUSION IMPEDANCE
19A. Compte, R. Metzler, J. Phys. A 30, 7277 (1997)
generalized Cattaneo equation
20(No Transcript)
21(No Transcript)
22THE EXPERIMENTAL SETUP
Impedance is measured using Solartron Frequency
Response Analyzer 1360 and Biological Interface
Unit 1293 in the frequency range 0.1 Hz to 100
kHz. Amplitude of signal was selected for 1000
mV.
23EXPERIMENTAL RESULT
? 0.30 0.06
24Final remarks
- We have developed a method to extract the
subdiffusion parameters from experimental data.
The method uses the membrane system, where the
transported substance diffuses from one vessel to
another, and it relies on a fully analytic
solution of the fractional subdiffusion equation.
We have applied the method to the experimental
data on glucose and sucrose subdiffusion in a gel
solvent. - We show that the reaction front evolves in time
as xfD?ft ?/2 with ? ? 1. The relation can be
used to identify the subdiffusion and to evaluate
the subdiffusion parameter ? in a porous medium
such as a tooth enamel.
25Final remarks
- Our first method to determine the subdiffusion
parameters relies on the time evolution of
near-membrane layer ?At?/2. Why the parameters
are not extracted directly from concentration
proflies? There are some reasons to choice the
near-membrane layers - The near-membrane layer is free of the dependence
on the boundary condition at the membrane - When the concentration profile is fitted by a
solution of subdiffusion equation, there are
three free parameters. When the temporal
evolution of ?? is discussed, ? is controlled by
time dependence of ?(t) while D ? is provided by
the coefficient A.
26Fractional derivative
..................................................
..............
27Fractional integral
..................................................
..............
28Fractional derivatives and integrals
The Riemann-Liouville (RL) definition
K.B. Oldham, J. Spanier, The fractional calculus,
AP 1974
29Examples
30Properties of fractional derivatives
Linearity
Chain rule
Leibnizs formula
31Scaling approach
32Scaling approach for subdiffusion ?
33Quasistationary approximation
(for normal diffusion-reaction system Z. Koza,
Physica A 240, 622 (1997), J. Stat. Phys. 85, 179
(1996))
Inside the depletion zone
In the region where R?(x,t) 0
34 Measuring subdiffusion parameters Short history
- Observing single particle
- Single particle tracking D.M. Martin et al.
Biophys. J. 83, 2109 (2002), P.R. Smith et
al., ibid. 76, 3331 (1999) - Fluorescence correlation spectroscopy P.
Schwille et al., Cytometry 36, 176 (1999) - Magnetic tweezers F. Amblard et al., PRL 77,
4470 (1996) - Optical tweezers A. Caspi, PRE 66, 011916 (2002)
- Observing concentration profiles
- NMR microscopy A. Klemm et al., PRE 65, 021112
(2002) - Anomalous time evolution of near membrane layer
T. Kosztolowicz, K. Dworecki, S. Mrówczynski, PRL
94, 170602 (2005) - Anomalous time evolution of reaction front S.B.
Yuste, L. Acedo, K. Lindenberg, PRE 69, 036126
(2004), T. Kosztolowicz, K. Lewandowska
(submitted)
35Subdiffusion equation
Attention!
so
is not equivalent to
36The same experimental data as in previous fig. on
log-log scale. The solid lines represent the
power function At0.45, the dotted lines
correspond to the function At0.50.