Fluid and Electrolyte Balance - PowerPoint PPT Presentation

1 / 53
About This Presentation
Title:

Fluid and Electrolyte Balance

Description:

... insert water pores in apical membrane. Water leaves by osmosis ... Causes aquaporin vesicles to move to apical membrane and fuse with it. Vasopressin Secretion ... – PowerPoint PPT presentation

Number of Views:113
Avg rating:3.0/5.0
Slides: 54
Provided by: jenag
Category:

less

Transcript and Presenter's Notes

Title: Fluid and Electrolyte Balance


1
Fluid and Electrolyte Balance
  • Dr. Jena Hamra

2
Homeostasis
  • Body maintains balance of water and ions
  • Loss Urine, feces, lungs, sweat
  • Intake Drink, eat
  • Osmolarity
  • Decreases Cells swell
  • Increases Cells shrink
  • Integration of multiple systems
  • Respiratory, cardiovascular
  • Kidney

3
(No Transcript)
4
Water Balance
  • Input Output
  • Water loss
  • Urine, feces, sweat, lungs
  • Water gain
  • Drink, food, IV fluids
  • Water conservation
  • Kidneys

5
(No Transcript)
6
Urine Concentration
  • Kidneys can concentrate urine
  • Without allowing osmotic water response
  • Loop of Henle
  • Urine becomes hyposmotic
  • Cells in ascending loop impermeable to water
  • Collecting duct
  • Urine concentration determined by tubule
    permeability to water
  • Impermeable Dilute urine
  • Permeable Concentrated urine

7
(No Transcript)
8
Vasopression (ADH)
  • Causes collecting duct to insert water pores in
    apical membrane
  • Water leaves by osmosis
  • Concentrated urine
  • No vasopressin
  • Collecting duct impermeable to water
  • Dilute urine

9
(No Transcript)
10
(No Transcript)
11
Vasopressin
  • Aquaporin
  • Water channel regulated by vasopressin
  • Found in
  • Apical membrane of collecting duct
  • Cytoplasmic vesicles
  • Vasopressin
  • Binds to receptors on basolateral membrane
  • Activates G-protein/cAMP
  • Causes aquaporin vesicles to move to apical
    membrane and fuse with it

12
(No Transcript)
13
Vasopressin Secretion
  • Stimuli for secretion
  • Blood pressure and volume
  • Volume decreases ?Atrial stretch receptors
    ?vasopressin release ?water conserved
  • Pressure decreases ? Carotid, aortic
    baroreceptors ? vasopressin release
  • ECF osmolarity!
  • Osmoreceptors in hypothalamus
  • Above 280 mOsm ? osmoreceptors fire ?vasopressin
    release
  • Below 280 mOsm ? osmoreceptors dont fire ? no
    release

14
(No Transcript)
15
Loop of Henle Countercurrent Exchange System
  • High osmolarity of medullary intersititium
  • Countercurrent exchange system
  • Descending loop of Henle
  • Permeable to water, not ions
  • Ascending loop of Henle
  • Permeable to ions, not water
  • Transfer of solutes into ECF by ascending limb
    creates osmotic gradient for water movement in
    descending limb

16
Vasa Recta
  • Peritubular capillaries
  • Pass into renal medulla
  • Flow opposite tubule flow
  • Descending vasa recta
  • Solutes enter, water leaves
  • Ascending vasa recta
  • Water enters to dilute
  • Urea
  • Increases osmolarity in medullary interstitium

17
(No Transcript)
18
Sodium Balance
  • Main ECF solute
  • Regulation through renin-angiotensin-aldosterone
    system (RAAS)
  • Aldosterone
  • Regulates sodium reabsorption in distal tubule
  • Also causes potassium secretion
  • Synthesized in adrenal cortex
  • Acts on principal cells
  • Distal tubule and collecting duct

19
(No Transcript)
20
Principal Cells
  • Na-K ATPase pumps on basolateral side
  • Channels and transporters on apical side
  • Na, K leak channels
  • Aldosterone
  • Fast response
  • Apical Na channels increase open time
  • Na-K ATPase pump speeds up
  • Slow response
  • Diffuses in, binds to cytoplasmic receptors
  • Directs synthesis of new protein channels and
    Na-K ATPase pumps

21
(No Transcript)
22
Control of Aldosterone Secretion
  • Potassium concentration
  • Increased K Acts on adrenal cortex ? stimulates
    aldosterone secretion
  • Increased osmolarity Acts on adrenal cortex ?
    inhibits aldosterone secretion
  • Indirect stimuli
  • Angiotensin II
  • Decreased blood pressure
  • Decreased GFR

23
Renin-Angiotenisn-Aldosterone Pathway
  • Angiotensin II (ANGII)
  • Primary control of aldosterone release
  • Pathway
  • JG cells secrete renin
  • Renin converts angiotensin to angiotensin I
  • Converted to angiotensin II by ACE
  • Lungs, blood vessel endothelium
  • ANGII stimulates aldosterone release by adrenal
    cortex

24
Stimuli for RAAS Pathway
  • Low renal arteriole pressure
  • JG cells secrete renin
  • Low blood pressure
  • Sympathetic neurons stimulate renin secretion
  • Low distal tubule flow
  • Macula densa secretes paracrines
  • Signals JG cells
  • High flow ? NO release ? Inhibits renin release

25
Angiotensin and Blood Pressure
  • Activation of brain ANGII receptors
  • Vasopressin secretion
  • Increased water reabsorption
  • Stimulates thirst
  • Vasoconstrictor
  • Increases blood pressure
  • ANGII receptors in CVCC
  • Sympathetic output to heart and blood vessels

26
(No Transcript)
27
Atrial Natriuretic Peptide
  • Released by atrial myocardial cells
  • Response to stretch
  • Causes sodium and water excretion
  • Increases GFR
  • More surface area
  • Decreases sodium and water reabsorption in
    collecting duct
  • Inhibits renin, aldosterone and vasopressin
    release
  • Affects CVCC ? Lower BP

28
(No Transcript)
29
Potassium Balance
  • Hyperkalemia
  • Decreases concentration gradient across membranes
    ? Depolarization
  • Hypokalemia
  • Increase concentration gradient ?
    Hyperpolarization
  • Increased potassium
  • Aldosterone secretion ? K secretion

30
Behavioral Mechanisms
  • Drinking water
  • Replaces fluid loss
  • Hypothalamic osmoreceptors (gt 280 mOsm)
  • Oropharynx receptors
  • Eating salt
  • Low plasma Na ? stimulates craving for salt
  • Hypothalamic salt appetite center
  • Avoidance behaviors

31
Integrated Control
  • Osmolarity and ECF volume can change
    independently
  • Each has 3 possible states
  • Normal
  • Increased
  • Decreased

32
(No Transcript)
33
Compensation
  • Increased volume, increased osmolarity
  • Excrete hypertonic urine
  • Increased volume, unchanged osmolarity
  • Excrete isotonic urine equal in volume
  • Increased volume, decreased osmolarity
  • Excrete dilute urine
  • Normal volume, decreased osmolarity
  • Conserve solutes, ingest more solutes

34
Compensation
  • Decreased volume, increased osmolarity
  • Thirst, fluid ingestion
  • Decreased volume, no osmolarity changes
  • Blood transfusion, isotonic fluid replacement
  • Decreased volume, decreased osmolarity
  • Uncommon
  • Table 20-2

35
Dehydration
  • Decreased volume, increased osmolarity
  • Adrenal cortex
  • Secrete and not secrete aldosterone
  • Fix osmolarity first!
  • Baroreceptors
  • Decrease firing
  • ? PSNS, ? SNS output ? ? blood pressure
  • ? HR, CO, vasoconstriction, ? GFR ? ? renin
  • Renin secretion
  • SNS stimulation
  • ? BP, ? GFR
  • Thirst, vasoconstriction, ? vasopressin

36
Compensatory Mechanisms
  • Cardiovascular response
  • Angiotensin II
  • Vasopressin
  • Thirst
  • Net result
  • Restoration of blood volume
  • Maintenance of blood pressure
  • Restoration of normal osmolarity

37
(No Transcript)
38
Acid-Base Balance
  • pH homeostasis
  • Closely regulated
  • Proteins sensitive
  • Enzymes, membrane channels, nervous system
  • Acidosis Decreased neuron excitability
  • Alkalosis Neuron hyperexcitability
  • Regulation linked to K balance
  • K-H-ATPase antiporter

39
Acid-Base Sources
  • Acid input
  • Organic acids
  • Metabolic intermediates, foods
  • Lactic acidosis
  • CO2 and aerobic respiration
  • HCO3 and H
  • Base input
  • Few significant sources

40
(No Transcript)
41
PH Homeostasis
  • Controlled by
  • Buffers
  • Ventilation
  • Renal regulation
  • Buffer systems
  • Intracellular buffers
  • Proteins, phosphate ions, hemoglobin
  • Extracellular buffers
  • Bicarbonate ion

42
Ventilation
  • PCO2 reflects CO2 content of blood
  • Changes in PCO2 alters H and HCO3
  • Hyperventilation ? CO2 ? ? H and HCO3
  • Hypoventilation ? CO2 ? ? H and HCO3
  • Control of ventilation
  • Carotid, aortic chemoreceptors H
  • Central chemoreceptors PCO2

43
(No Transcript)
44
Renal Regulation
  • Direct
  • Retaining or excreting H
  • Indirect
  • Reabsorption or excreting HCO3
  • Acidosis
  • Kidney secretes H into proximal and distal
    tubules
  • Ammonia and phosphate buffers in urine
  • HCO3 reabsorbed
  • Alkalosis
  • Kidney secretes HCO3, reabsorbs H

45
(No Transcript)
46
Renal Regulation
  • Cellular mechanisms
  • Apical Na-H antiporter
  • Indirect active transporter
  • Basolateral Na-HCO3 symporter
  • Indirect active transporter
  • H-ATPase
  • Secretes H against concentration gradient
  • H-K-ATPase
  • H into urine, K reabsorbed
  • Na-NH4-ATPase

47
Proximal Tubule
  • Most HCO3 reabsorbed here
  • 2 pathways
  • Secretion of H into tubule (Na-H antiport)
  • Combines with filtered HCO3 ? CO2
  • CO2 diffuses into proximal cell and dissociates
    to H and HCO3
  • H secreted and HCO3 transporter out by HCO3-Na
    symporter

48
Proximal Tubule
  • Glutamine pathway
  • Glutamine loses 2 amino groups
  • Become ammonia
  • Buffers H ? NH4
  • NH4 transported into lumen in exchange for Na
  • a-ketoglutarate metabolized to HCO3
  • Transported into blood with Na

49
(No Transcript)
50
Distal Nephron
  • Fine regulation of acid-base balance
  • Intercalated cells
  • Between principal cells
  • Type A Acidosis secrete H, reabsorb HCO3
  • H-ATPase, H-K-ATPase
  • HCO3-Cl- antiporter
  • Type B Alkalosis secrete HCO3, reabsorb H
  • Same transporters, opposite polarity
  • Carbonic anhydrase
  • Potassium balance

51
(No Transcript)
52
Acid-Base Disturbances
  • Respiratory Acidosis
  • Ventilation inadequate to remove CO2
  • ? plasma pH, ? HCO3
  • Compensation Renal ONLY
  • Secrete H, Reabsorb HCO3
  • Metabolic Acidosis
  • Dietary and metabolic acid input exceeds acid
    excretion
  • ? HCO3
  • Compenstion
  • Renal Excrete H, Reabsorb HCO3
  • Respiratory Increase ventilation

53
Acid-Base Disturbances
  • Respiratory Alkalosis
  • Increased alveolar ventilation without increase
    in CO2
  • ? HCO3 and ? pH
  • Compensation
  • Renal ONLY HCO3 excreted and secreted, H
    reabsorbed
  • Metabolic Alkalosis
  • Acid excretion exceeds acid input
  • ? HCO3
  • Compensation
  • Respiratory Decreased ventilation
  • Renal HCO3 excreted, H reabsorbed
Write a Comment
User Comments (0)
About PowerShow.com