Title: Odd Crossing Number
1Odd Crossing Number is NOT Crossing Number
Michael Pelsmajer IIT (Chicago) Marcus
Schaefer DePaul University (Chicago) Daniel
Å tefankovic University of Rochester
2Crossing number
cr(G) minimum number of crossings
in a planar drawing of G
cr(K5)?
3Crossing number
cr(G) minimum number of crossings
in a planar drawing of G
cr(K5)1
4Rectilinear crossing number
rcr(G) minimum number of crossings
in a planar straight-line drawing
of G
rcr(K5)?
5Rectilinear crossing number
rcr(G) minimum number of crossings
in a planar straight-line drawing
of G
rcr(K5)1
6Rectilinear crossing number
rcr(G) minimum number of crossings
in a planar straight-line drawing
of G
cr(G) ? rcr(G)
7cr(G)0 ? rcr(G)0
THEOREM SR34,W36,F48,S51
Every planar graph has a straight-line planar
drawing.
Steinitz, Rademacher 1934 Wagner 1936 Fary
1948 Stein 1951
8Are they equal?
cr(G)0 , rcr(G)0
cr(G)1 , rcr(G)1
cr(G)2 , rcr(G)2
cr(G)3 , rcr(G)3
?
cr(G)rcr(G)
9cr(G) ? rcr(G)
THEOREM Guy 69
cr(K8) 18 rcr(K8)19
cr(G)rcr(G)
10cr(G) ? rcr(G)
THEOREM Guy 69
cr(K8) 18 rcr(K8)19
THEOREM Bienstock,Dean 93
(8k)(9G) cr(G) 4
rcr(G)k
11Crossing numbers
cr(G) minimum number of crossings
in a planar drawing of G
rcr(G) minimum number of crossings
in a planar straight-line drawing
of G
cr(G) ? rcr(G)
(?G) cr(G) ? rcr(G)
12Odd crossing number
ocr(G) minimum number of pairs of edges
crossing odd number of times
13Odd crossing number
ocr(G) minimum number of pairs of edges
crossing odd number of times
ocr(G) ? cr(G)
14Odd crossing number
ocr(G) minimum number of pairs of edges
crossing odd number of times
ocr(K5)?
15Proof (Tutte70) ocr(K5)1
INVARIANT
How many pairs of non-adjacent edges intersect
(mod 2) ?
16Proof (Tutte70) ocr(K5)1
17Proof ocr(K5)1
How many pairs of non-adjacent idges intersect
(mod 2) ?
steps which change isotopy
18Proof ocr(K5)1
How many pairs of non-adjacent idges intersect
(mod 2) ?
steps which change isotopy
19Proof ocr(K5)1
How many pairs of non-adjacent idges intersect
(mod 2) ?
20Proof ocr(K5)1
How many pairs of non-adjacent idges intersect
(mod 2) ?
QED
21Hanani34,Tutte70
ocr(G)0 ? cr(G)0
If G has drawing in which all pairs of edges
cross even times ? graph is planar!
22Are they equal?
ocr(G)0 , cr(G)0
QUESTION Pach-Tóth00
?
ocr(G)cr(G)
23Are they equal?
ocr(G)0 ? cr(G)0
?
ocr(G)cr(G)
Pach-Tóth00
cr(G) ? 2ocr(G)2
24Main result
THEOREM Pelsmajer,Schaefer,Å 05
ocr(G) ? cr(G)
25How to prove it?
THEOREM Pelsmajer,Schaefer,Å 05
ocr(G) ? cr(G)
- Find G.
- Draw G to witness small ocr(G).
- Prove cr(G)gtocr(G).
26How to prove it?
THEOREM Pelsmajer,Schaefer,Å 05
ocr(G) ? cr(G)
- Find G.
- Draw G to witness small ocr(G).
- Prove cr(G)gtocr(G).
Obstacle cr(G)gtx is co-NP-hard!
27Crossing numbers for maps
28Crossing numbers for maps
29Crossing numbers for maps
30Ways to connect
31Ways to connect
32Ways to connect
33Ways to connect
34Ways to connect
35Ways to connect
number of Dehn twists
-1
0
1
36Ways to connect
How to compute intersections ?
37Ways to connect
How to compute intersections ?
0
2
1
38Crossing number
min ?iltjxi-xj(?igt?j)
xi2Z
do arcs i,j intersect in the initial drawing?
the number of twists of arc i
39Crossing number
i
min ?iltjxi-xj(?igt?j)
xi2Z
j
do arcs i,j intersect in the initial drawing?
the number of twists of arc i
40Crossing number
min ?iltjxi-xj(?igt?j)
xi2Z
j
i
do arcs i,j intersect in the initial drawing?
the number of twists of arc i
41Crossing number
min ?iltjxi-xj(?igt?j)
OPT
xi2Z
OPT
xi2R
42Crossing number
min ?iltjxi-xj(?igt?j)
OPT
xi2Z
OPT
xi2R
Lemma OPT OPT.
43Crossing number
min ?iltjxi-xj(?igt?j)
Lemma OPT OPT.
Obstacle cr(G)gtx is co-NP-hard!
44Crossing number
min ?iltjxi-xj(?igt?j)
yij xi-xj(?igt?j)
yij xixj-(?igt?j)
Obstacle cr(G)gtx is co-NP-hard!
45Crossing number
min ?iltj yij
yij xi-xj(?igt?j)
yij xixj-(?igt?j)
Obstacle cr(G)gtx is co-NP-hard!
46Crossing number
Dual linear program
max ?iltj Qij(?igt?j)
QT-Q Q10 -1 ? Qij ? 1
Q is an nn matrix
47EXAMPLE
a
b
c
d
48Odd crossing number ?
a
b
c
d
49Odd crossing number
a
ocr ? adbc
b
c
d
50Crossing number ?
a
max ?iltj Qij(?igt?j)
b
QT-Q Q10 -1 ? Qij ? 1
c
d
?(2,1,4,3)
a ? b ? c ? d ac ? d
0 ac b(d-a) -ac 0
ab a(c-b) b(a-d) -ab 0 bd
a(b-c) -bd 0
cr ? acbd
51Putting it together
a
ocr ? adbc
b
cr ? acbd
c
a ? b ? c ? d ac ? d
d
bc1, a(v3-1)/20.37, dac
ocr/crv3/20.87
52Crossing number
a
ocr/crv3/20.87
b
c
d
53Crossing number
a
ocr/crv3/20.87
b
c
for graphs?
d
54Crossing number
a
ocr/crv3/20.87
b
c
d
cr?
55Crossing number
a
ocr/crv3/20.86
b
c
d
cr?
56Crossing number for graphs
Theorem (8 ?gt0) (9 graph) with
ocr/cr ? v3/2?.
57Is crO(ocr)?
58Is crO(ocr)?
Is cr O(ocr) on annulus?
59Is crO(ocr)?
Is cr O(ocr) on annulus?
Theorem On annulus cr ? 3ocr
60Theorem On annulus cr ? 3ocr
BAD triple
GOOD triple
61n.CR ? 3BAD
p
BAD triple
Pay of bad triples p,i,j
Average over p.
62BAD ? n.OCR
random i,j,k Xodd pairs
BAD triple
BAD bin(n,3)
3OCR bin(n,2)
EX
?
?
63BAD ? n.OCR
n.CR ? 3BAD
BAD triple
CR ? 3OCR
(on annulus)
64Crossing number for graphs
There exists graph with
ocr/cr ? v3/2?.
On annulus ocr/cr ? 1/3
Experimental evidence ocr/cr ? v3/2 on
annulus and pair of pants
Bold (wrong) conjecture For any graph
ocr/cr ? v3/2
65Questions
crossing number of maps with d vertices in
poly-time? (true for d ? 2)
Bold (wrong) conjecture For any graph
ocr/cr ? v3/2
(map graph rotation system)
66Open questions - classic
Guys conjecture
cr(Kn)
Zarankiewiczs conjecture
cr(Km,n)
Better approx algorithm for cr.
67Crossing number for graphs
pair crossing number (pcr) number of pairs of
crossing edges algebraic crossing number (acr)
? algebraic crossing number of edges
-1
1
68Crossing numbers
acr(G)
ocr(G)
cr(G)
rcr(G)
pcr(G)