Title: On conflict-avoiding codes of weight 3 and odd length
1On conflict-avoiding codes ofweight 3 and odd
length
2Definitions
- Optical orthogonal code OOC(n,w,?a,?c)
- Length n
- Weight w
- Hamming auto-correlation ? ?a
- Hamming cross-correlation ? ?c
- Conflict-avoiding code (Tsybakov and Rubinov
(02)) - CAC(n,w) OOC(n,w,?,1)
- no requirement on Hamming auto-correlation.
3Application to multiple-access collision channel
without feedback
Hello !
message
4Parameters
- Number of codewords T
- Total number of potential users
- Each user is statically assigned a unique
codeword - Sequence period n
- maximal delay experience by an active user
- Hamming weight w
- Maximal number of simultaneously active users
- Objective Given n and w, maximize T
5Outline
- Review of the literature on CAC
- Formulation using graph theory
- Some new optimal CAC of weight 3 and odd length
6Maximal number of codewords
- Let M(n,w) be largest number of codewords in a
CAC of length n and weight w. - Levenshtein (07)
for n 4t 2
for odd n, n ??
7CAC of even length and weight 3
- Jimbo, Mishima, Janiszewski, Teymorian
and Tonchev (07) - Mishima, Fu and Uruno (09)
- Fu, Lin and Mishima (10)
8CAC of weight gt 3
- Some constructions of optimal CAC of weight 4 and
5 - Momihara, Müller, Satoh and Jimbo (07)
- CAC in general
- S and Wong
For w ? 3,
9Outline
- Review of the literature on CAC
- Formulation using graph theory
- hypergraph matching
- Some new optimal CAC of weight 3 and odd length
10Terminology
- A binary sequence can be represented by a
characteristic set. - Sequence 0 1 1 0 0 1 0 0 ? 1,2,5
- Indices 0 1 2 3 4 5 6 7
- The set of differences contains the separations
between the ones in a sequence - ?(A) x y mod n x, y ? A, x ? y
- For example ?(1,2,5) 1,3,4,5,7
11Equivalent definition of CAC
?(A) x y mod n x, y ? A, x ? y
- The characteristic sets of CAC is a collection of
subsets of Zn, say A1, A2, , AM , such that - Each of them has size w.
- ?(Ai) ? ?(Ak) ? for i ? k.
- Example n15,
- 111000000000000 ? 0,1,2, ?(0,1,2)
1,2,13,14 - 100100100000000 ? 0,3,6, ?(0,3,6)
3,6,9,12 - 100010001000000 ? 0,4,8, ?(0,4,8)
4,7,8,11 - 100001000010000 ? 0,5,10, ?(0,5,10) 5,10
12Equi-difference codewords
- By cyclically shifting the sequence, we can
assume without loss of generality that 0 belongs
to the characteristic set. - For sequence with Hamming weight 3, we can write
the characteristic set as 0,a,b WLOG. - ?(0,a,b) ?a, ?b, ?(a b)
- In particular, a sequence with characteristic set
0,a,2a is said to be equi-difference. - The integer a is called the generator of this
codeword - ?(0,a,2a) ?a, ?2a
13Formulation using (hyper)graph
- Observation x ? ?(A) implies n x ? ?(A)
- ? we can identify x and x mod n.
- Assume n odd. Let m (n 1)/2.
- Undirected graph with vertex set 1,2,,m.
- Construct hyperedges ?(0,a,b) ? 1,2,,m
- for a and b running over all distinct elements in
1,2,,n - Objective look for a maximal collection of
non-intersecting hyperedges. - A matching problem.
14A greedy method for equi-difference codewords
n15, m7
A perfect matchingEach vertex is covered by a
red edge,and all red edges are disjoint.
3
4
2
5
6
1
7
101010000000000 ? 0,2,4 ? ?(0,2,4) ?2,
?4. (conflict with 0,1,2)
100100100000000 ? 0,3,6 ? ?(0,3,6) ?3,
?6.
100010001000000 ? 0,4,8 ? ?(0,4,8) ?4,
?7.
100001000010000 ? 0,5,10 ? ?(0,5,10) ?5.
100000100000100 ? 0,6,12 ? ?(0,6,12) ?3,
?6 (conflict with 0,3,6)
100000010000001 ? 0,7,14 ? ?(0,7,14) ?1,
?4 (conflict with 0,1,2) and 0,4,8
15Another example n 31, m 15equi-difference
codewords only
Theorem (Levenshtein (07))The graph with
edgesfrom the equi-difference codewordsare
decomposed into cycles.
Find a maximalmatching
Six equi-differencecodewords
15
8
4
1
2
14
3
10
5
7
6
13
11
12
9
16The optimal solution with hyperedges
15
8
4
1
2
14
3
10
5
7
6
13
11
12
9
Seven codewords
17M(31,3) 7
- n31
- 0,4,8 ? 1000100010000000000000000000000
- 0,6,12 ? 1000001000001000000000000000000
- 0,7,14 ? 1000000100000010000000000000000
- 0,9,18 ? 1000000001000000001000000000000
- 0,10,20?1000000000100000000010000000000
- 0,15,30?1000000000000001000000000000001
- 0,2,5 ? 1010010000000000000000000000000
18The cycle graph for n99.
38
37
23
19
25
31
40
46
34
49
20
7
17
1
10
14
41
2
28
5
29
4
43
47
8
35
26
13
11
32
16
44
22
18
3
9
6
36
48
27
45
24
12
15
42
30
33
39
21
19M(99,3) 24
- Two non-equi-difference codewords 0,1,11,
0,6,15. - Twenty two equi-difference codewords generated by
2,7,8,12,13,17,18,19,20,21,22,23,25,27,28,29,30,3
1,32,33,47,48.
20A sufficient condition for being an optimal CAC
- Theorem 1
- Let n be an odd integer, and let Nodd(n) be the
number of odd-cycle in the graph. - If we can find ?Nodd(n) / 3? mutually disjoint
hyperedge of size 3 lying across 3? ?Nodd(n) / 3?
cycles of odd length, then equality holds.
21The upper bound in Thm 1 is not tight
For n powers of 3 or 7, M(n,3) is strictly
less than the upper bound in Theorem 1. (because
in these cases, non-equi-difference codewords
are not useful in constructing optimal CAC.)
22n 11 13 15 17 19 21 23 25 27 29
M(n,3) 2 3 4 4 4 5 5 6 6 7
Thm 2
n 31 33 35 37 39 41 43 45 47 49
M(n,3) 7 8 8 9 10 10 10 11 11 11
new new new Thm 2
n 51 53 55 57 59 61 63 65 67 69
M(n,3) 13 13 13 14 14 15 15 16 16 17
new
n 71 73 75 77 79 81 83 85 87 89
M(n,3) 17 17 19 18 19 19 20 21 22 21
new Thm 2 new
n 91 93 95 97 99 101 103 105 107 109
M(n,3) 22 23 23 24 24 25 25 26 26 27
new new
non-equiv-difference codewords are required to
construct optimal CAC
23Conclusion
- Numerical results
- For all odd n lt500, except n81, 189, 243, 343,
405, 441, - M(81,3) 19, M(189,3) 47
- M(243,3) 60, M(343,3) 85
- M(405,3) 101, M(441,3) 110
8134, 189 33 ? 7 24335, 34373, 405 34 ?
5, 441 32 ? 72.
24References
- Tsybakov and Rubinov, Some constructions of
conflict-avoiding codes, Problems of Inf. Trans.,
2002. - V. I. Levenshtein, Conflict-avoiding codes and
cyclic triple systems, Probems of Inf. Trans.,
2007. - M. Jimbo et al., On conflict-avoiding codes of
length n4m for three active users, IEEE Trans.
Inf. Theory, 2007. - M. Mishima, H.-L. Fu and S. Uruno, Optimal
conflict-avoiding codes of length n?0(mod16) and
weight 3, Des. Codes Cryptogr., 2009. - H.-L. Fu, Y.-H. Lin and M. Mishima, Optimal
conflict-avoiding codes of even length and weight
3, IEEE Trans. Inf. Theory, 2010. - K. W. Shum and W. S. Wong, A tight asymptotic
bound on the size of constant-weight
conflict-avoiding codes, Des. Codes Cryptogr.,
2010.
25n 111 113 115 117 119 121 123 125 127 129
M(n,3) 28 28 28 29 29 29 31 31 30 31
Thm 1 Thm 1
n 131 133 135 137 139 141 143 145 147 149
M(n,3) 32 32 33 34 34 35 35 36 36 37
n 151 153 155 157 159 161 163 165 167 169
M(n,3) 36 38 38 39 40 39 40 41 41 42
Thm 1 Thm 1 Thm 1 Thm 1
n 171 173 175 177 179 181 183 185 187 189
M(n,3) 41 43 43 44 44 45 46 46 46 47
Thm 1 Thm 1 Similar to Thm 2
n 191 193 195 197 199 201 203 205 207 209
M(n,3) 47 48 49 49 49 50 50 51 51 51
Thm 1 Thm 1
non-equiv-difference codewords are required to
construct optimal CAC
26n 211 213 215 217 219 221 223 225 227 229
M(n,3) 52 53 53 52 54 55 55 56 56 57
Thm 1 Thm 1 Thm 1 Thm 1
n 231 233 235 237 239 241 243 245 247 249
M(n,3) 57 57 58 59 59 60 60 60 61 62
Thm 1 Thm 1 Thm 2 Thm 1
n 251 253 255 257 259 261 263 265 267 269
M(n,3) 60 62 64 64 64 65 65 66 65 67
Thm 1 Thm 1
n 271 273 275 277 279 281 283 285 287 289
M(n,3) 67 68 68 69 69 69 70 71 71 72
Thm 1 Thm 1 Thm 1 Thm 1
n 291 293 295 297 299 301 303 305 307 309
M(n,3) 73 73 73 73 74 74 76 76 76 77
Thm 1 Thm 1 Thm 1
non-equiv-difference codewords are required to
construct optimal CAC
27n 311 313 315 317 319 321 323 325 327 329
M(n,3) 77 78 78 79 79 80 80 81 82 81
Thm 1 Thm 1
n 331 333 335 337 339 341 343 345 347 349
M(n,3) 80 83 83 82 85 84 85 86 86 87
Thm 1 Thm 1 Thm 1 Thm 2
n 351 353 355 357 359 361 363 365 367 369
M(n,3) 87 88 88 89 89 89 88 89 91 92
Thm 1 Thm 1
n 371 373 375 377 379 381 383 385 387 389
M(n,3) 92 93 94 94 94 94 95 95 94 97
Thm 1 Thm 1
n 391 393 395 397 399 401 403 405 407 409
M(n,3) 97 98 98 99 99 100 100 101 101 102
Thm 1 Thm 1 Thm 1 Similar to Thm 2
non-equiv-difference codewords are required to
construct optimal CAC
28n 411 413 415 417 419 421 423 425 427 429
M(n,3) 103 102 103 104 104 105 105 106 106 107
Thm 1 Thm 1
n 431 433 435 437 439 441 443 445 447 449
M(n,3) 106 108 109 108 109 110 110 110 112 112
Thm 1 Thm 1 Similar to Thm 2 Thm 1
n 451 453 455 457 459 461 463 465 467 469
M(n,3) 112 112 113 114 114 115 115 116 116 116
Thm 1 Thm 1
n 471 473 475 477 479 481 483 485 487 489
M(n,3) 118 116 118 119 119 120 120 121 121 122
Thm 1 Thm 1 Thm 1
n 491 493 495 497 499 501 503 505 507 509
M(n,3) 122 123 123 123 124 125 125 126 127 127
Thm 1 Thm 1 Thm 1
non-equiv-difference codewords are required to
construct optimal CAC
29n 511 513 515 517 519 521 523 525 527 529
M(n,3) 103 102 103 104 104 105 105 106 106 107
n 531 533 535 537 539 541 543 545 547 549
M(n,3) 106 108 109 108 109 110 110 110 112 112
n 451 453 455 457 459 461 463 465 467 469
M(n,3) 112 112 113 114 114 115 115 116 116 116
n 471 473 475 477 479 481 483 485 487 489
M(n,3) 118 116 118 119 119 120 120 121 121 122
n 491 493 495 497 499 501 503 505 507 509
M(n,3) 122 123 123 123 124 125 125 126 127 127
non-equiv-difference codewords