Title: Superfluidity and magnetism in multicomponent ultracold fermions
1Superfluidity and magnetism in multicomponent
ultracold fermions
- Robert Cherng - Harvard
- Gil Refael - Caltech
- Eugene Demler - Harvard
arXiv0705.0347
2Fermionic superfluidity and magnetization?
- Superfluidity pairing of different states
- Magnetization imbalance of different states
http//picturethis.pnl.gov/picturet.nsf/All/44CT2Y
?opendocument
3Fermionic superfluidity and magnetization?
- Ultracold atoms tunable model system
- Coexistence? Hard with two components, natural
with three or more
Zwierlein et al., Nature 435, 1047 (2005)
4Outline
- Two components BCS theory and beyond
- Two components ultracold atoms
- Classifying mean-field states WT identities
- Mean-field global phase diagrams
- Experimental signatures
- RG and fluctuations (preliminary)
5BCS Theory 50th Anniversary
http//www.brown.edu/Departments/Physics/50YearsBC
S/
Phys. Rev. 108, 1175 (1957) Nobel Prize 1972
6BCS, FFLO, BP/Sarma
FS
FS
7BCS, FFLO, BP/Sarma
FS
FS
BCS
8BCS, FFLO, BP/Sarma
FS
FS
BCS
FS
FS
FS
FS
9BCS, FFLO, BP/Sarma
FS
FS
BCS
FS
FS
FFLO
FS
FS
10BCS, FFLO, BP/Sarma
FS
FS
BCS
FS
FS
FFLO
FS
FS
11BCS, FFLO, BP/Sarma
- Bardeen, Cooper, Schreiffer
- Phys. Rev. 108, 1175 (1957)
BCS
- Fulde-Ferrel, Larkin-Ovchinnikov
- Breaks translational symmetry
- Phys. Rev. 135, A550 (1964)
- ZETP 47, 1136 (1964)
FFLO
- Liu-Wilczek (Breached-Pair), Sarma
- Phase separation in k space
- Gapless quasiparticles
- PRL 90, 047002 (2003)
- J. Phys. Chem. Solids 24, 1029 (1963)
12Outline
- Two components BCS theory and beyond
- Two components ultracold atoms
- Classifying mean-field states WT identities
- Mean-field global phase diagrams
- Experimental signatures
- RG and fluctuations (preliminary)
13Fermionic superfluids with cold atoms
- Isolated and dilute gases of alkali atoms
- Tunable interactions and populations
- Two component superfluids JILA, MIT, Innsbruck,
Duke,
Zwierlein et al., Nature 435, 1047 (2005)
Regal et al., PRL 92, 040403 (2004)
14Three components using 6Li
6Li (I,L,S)(1,0,1/2)
E
B
PRL 94, 103201 (2005)
15Three or more components
- Each component individually conserved
- N densities na
- N(N-1)/2 scattering lengths aaß
16Outline
- Two components BCS theory and beyond
- Two components ultracold atoms
- Classifying mean-field states WT identities
- Mean-field global phase diagrams
- Experimental signatures
- RG and fluctuations (preliminary)
17Pairing Three Components?
FS
FS
FS
Honerkamp and Hofstetter PRL 92, 170403 (2004)
18Pairing Three Components?
FS
FS
FS
FS
Honerkamp and Hofstetter PRL 92, 170403 (2004)
19Pairing Three Components?
FS
FS
FS
FS
FS
FS
Honerkamp and Hofstetter PRL 92, 170403 (2004)
20Model action
Imaginary Time Action
Coupling Constants
21Physical symmetries and symmetry breaking
Symmetric µaµ, ?aß?
Normal State
Superfluid State
22Field Redefinition Invariance
Start from
23Field Redefinition Invariance
Start from
Then redefine fields
24Field Redefinition Invariance
Start from
Then redefine fields
But remember to redefine coupling constants
25Field Redefinition Invariance
Start from
Then redefine fields
But remember to redefine coupling constants
Leaving Z invariant
26Field Redefinition Invariance
Start from
Then redefine fields
But remember to redefine coupling constants
Leaving Z invariant
Or infinitesimally (WT identity)
27Physical Interpretation
Rotation
Rotation
28Physical Interpretation
29Physical Interpretation
- Physics same under change of basis
- Dependence on explicit symmetry breaking not
arbitrary
30Mean-field theory
Order Parameters
Gap Equations
Greens Functions
31Diagonal Pairing States
Solve WT Identity
By diagonalizing order parameters
And finding the eigenvectors
32Microscopic Pairing Wavefunctions
N2 P1
N3 P1
N4 P1
N4 P2
33Outline
- Two components BCS theory and beyond
- Two components ultracold atoms
- Classifying mean-field states WT identities
- Mean-field global phase diagrams
- Experimental signatures
- RG and fluctuations (preliminary)
34Ginzburg-Landau Free Energy
Expansion from U(N) symmetric superfluid
transition
35Ginzburg-Landau Free Energy
Coupling of magnetization and pairing
Quadratic symmetry breaking
Expansion from U(N) symmetric superfluid
transition
36Ginzburg-Landau Free Energy
Coupling of magnetization and pairing
Quadratic symmetry breaking
Particle-hole symmetric
Expansion from U(N) symmetric superfluid
transition
Particle-hole symmetry breaking
37N3 Phase Diagrams
TgtTcSYM Fixed µ
TltTcSYM Fixed µ
TgtTcSYM Fixed n
TltTcSYM Fixed n
38N4 Phase Diagrams
TgtTcSYM, fixed µ
TltTcSYM, fixed µ
Legend
Global minimum
1st meta- stable
?, f parameterize anisotropies in µ
39N4 Phase Diagrams
40Outline
- Two components BCS theory and beyond
- Two components ultracold atoms
- Classifying mean-field states WT identities
- Mean-field global phase diagrams
- Experimental signatures
- RG and fluctuations (preliminary)
41State Selective Imaging
BEC
BCS
Less Imbalance
More Imbalance
Science 311, 492 (2006)
42Phase-contrast Imaging
PRL 97, 030401 (2006)
43RF Spectroscopy
3
RF
1
2
Science 305, 1128 (2004)
BEC
BCS
Unitary
Higher T
Lower T
44RF Spectroscopy
3
RF
1
2
Science 305, 1128 (2004)
BEC
BCS
Unitary
Higher T
Normal
Lower T
45RF Spectroscopy
3
RF
1
2
Science 305, 1128 (2004)
BEC
BCS
Unitary
Higher T
Normal
Paired
Lower T
46Outline
- Two components BCS theory and beyond
- Two components ultracold atoms
- Classifying mean-field states WT identities
- Mean-field global phase diagrams
- Experimental signatures
- RG and fluctuations (preliminary)
47U(N) Symmetric Superfluid Transition
Ginzburg-Landau Action
Fields
Symmetric
Symmetry Breaking
48RG in e-Expansion
49Fixed Points and Stability
- Three couplings, eight fixed points
- For N3
- Eight physical FP
- One IR stable FP with ?M2, ?I, ?H e
- For Ngt3
- 4 physical FP (4 with imaginary couplings)
- No IR stable FP
50Conclusions
- Superfluidity drives magnetization for
multicomponent fermions - Classification of microscopic pairing
wavefunctions via Ward-Takahashi identities - Rich phase diagrams first/second order
transitions, metastability/phase separation,
multicritical
arXiv0705.0347
51State Selective Imaging
Less Imbalance
Majority/Minority/Difference
Majority Species
Minority Species
Difference
Science 311, 503 (2006)
More Imbalance
52Three or more components
- Each component individually conserved
- N densities na, N(N-1)/2 scattering lengths aaß
- Caveats Nuclear spin flips, inelastic losses
Elastic collisions
N2
Dipole-dipole interaction
N3