Superfluidity and magnetism in multicomponent ultracold fermions - PowerPoint PPT Presentation

1 / 52
About This Presentation
Title:

Superfluidity and magnetism in multicomponent ultracold fermions

Description:

Physics same under change of basis. Dependence on explicit symmetry breaking not arbitrary ... Science 305, 1128 (2004) Outline. Two components: BCS theory and beyond ... – PowerPoint PPT presentation

Number of Views:28
Avg rating:3.0/5.0
Slides: 53
Provided by: che90
Category:

less

Transcript and Presenter's Notes

Title: Superfluidity and magnetism in multicomponent ultracold fermions


1
Superfluidity and magnetism in multicomponent
ultracold fermions
  • Robert Cherng - Harvard
  • Gil Refael - Caltech
  • Eugene Demler - Harvard

arXiv0705.0347
2
Fermionic superfluidity and magnetization?
  • Superfluidity pairing of different states
  • Magnetization imbalance of different states

http//picturethis.pnl.gov/picturet.nsf/All/44CT2Y
?opendocument
3
Fermionic superfluidity and magnetization?
  • Ultracold atoms tunable model system
  • Coexistence? Hard with two components, natural
    with three or more

Zwierlein et al., Nature 435, 1047 (2005)
4
Outline
  • Two components BCS theory and beyond
  • Two components ultracold atoms
  • Classifying mean-field states WT identities
  • Mean-field global phase diagrams
  • Experimental signatures
  • RG and fluctuations (preliminary)

5
BCS Theory 50th Anniversary
http//www.brown.edu/Departments/Physics/50YearsBC
S/
Phys. Rev. 108, 1175 (1957) Nobel Prize 1972
6
BCS, FFLO, BP/Sarma

FS
FS
7
BCS, FFLO, BP/Sarma


FS
FS
BCS
8
BCS, FFLO, BP/Sarma


FS
FS
BCS

FS
FS

FS
FS
9
BCS, FFLO, BP/Sarma


FS
FS
BCS


FS
FS
FFLO

FS
FS
10
BCS, FFLO, BP/Sarma


FS
FS
BCS


FS
FS
FFLO


FS
FS
11
BCS, FFLO, BP/Sarma
  • Bardeen, Cooper, Schreiffer
  • Phys. Rev. 108, 1175 (1957)

BCS
  • Fulde-Ferrel, Larkin-Ovchinnikov
  • Breaks translational symmetry
  • Phys. Rev. 135, A550 (1964)
  • ZETP 47, 1136 (1964)

FFLO
  • Liu-Wilczek (Breached-Pair), Sarma
  • Phase separation in k space
  • Gapless quasiparticles
  • PRL 90, 047002 (2003)
  • J. Phys. Chem. Solids 24, 1029 (1963)

12
Outline
  • Two components BCS theory and beyond
  • Two components ultracold atoms
  • Classifying mean-field states WT identities
  • Mean-field global phase diagrams
  • Experimental signatures
  • RG and fluctuations (preliminary)

13
Fermionic superfluids with cold atoms
  • Isolated and dilute gases of alkali atoms
  • Tunable interactions and populations
  • Two component superfluids JILA, MIT, Innsbruck,
    Duke,

Zwierlein et al., Nature 435, 1047 (2005)
Regal et al., PRL 92, 040403 (2004)
14
Three components using 6Li
6Li (I,L,S)(1,0,1/2)
E
B
PRL 94, 103201 (2005)
15
Three or more components
  • Each component individually conserved
  • N densities na
  • N(N-1)/2 scattering lengths aaß

16
Outline
  • Two components BCS theory and beyond
  • Two components ultracold atoms
  • Classifying mean-field states WT identities
  • Mean-field global phase diagrams
  • Experimental signatures
  • RG and fluctuations (preliminary)

17
Pairing Three Components?
FS
FS
FS
Honerkamp and Hofstetter PRL 92, 170403 (2004)
18
Pairing Three Components?
FS
FS
FS
FS
Honerkamp and Hofstetter PRL 92, 170403 (2004)
19
Pairing Three Components?
FS
FS
FS
FS
FS
FS
Honerkamp and Hofstetter PRL 92, 170403 (2004)
20
Model action
Imaginary Time Action
Coupling Constants
21
Physical symmetries and symmetry breaking
Symmetric µaµ, ?aß?
Normal State
Superfluid State
22
Field Redefinition Invariance
Start from
23
Field Redefinition Invariance
Start from
Then redefine fields
24
Field Redefinition Invariance
Start from
Then redefine fields
But remember to redefine coupling constants
25
Field Redefinition Invariance
Start from
Then redefine fields
But remember to redefine coupling constants
Leaving Z invariant
26
Field Redefinition Invariance
Start from
Then redefine fields
But remember to redefine coupling constants
Leaving Z invariant
Or infinitesimally (WT identity)
27
Physical Interpretation
Rotation
Rotation
28
Physical Interpretation
29
Physical Interpretation
  • Physics same under change of basis
  • Dependence on explicit symmetry breaking not
    arbitrary

30
Mean-field theory
Order Parameters
Gap Equations
Greens Functions
31
Diagonal Pairing States
Solve WT Identity
By diagonalizing order parameters
And finding the eigenvectors
32
Microscopic Pairing Wavefunctions
N2 P1
N3 P1
N4 P1
N4 P2
33
Outline
  • Two components BCS theory and beyond
  • Two components ultracold atoms
  • Classifying mean-field states WT identities
  • Mean-field global phase diagrams
  • Experimental signatures
  • RG and fluctuations (preliminary)

34
Ginzburg-Landau Free Energy
Expansion from U(N) symmetric superfluid
transition
35
Ginzburg-Landau Free Energy
Coupling of magnetization and pairing
Quadratic symmetry breaking
Expansion from U(N) symmetric superfluid
transition
36
Ginzburg-Landau Free Energy
Coupling of magnetization and pairing
Quadratic symmetry breaking
Particle-hole symmetric
Expansion from U(N) symmetric superfluid
transition
Particle-hole symmetry breaking
37
N3 Phase Diagrams
TgtTcSYM Fixed µ
TltTcSYM Fixed µ
TgtTcSYM Fixed n
TltTcSYM Fixed n
38
N4 Phase Diagrams
TgtTcSYM, fixed µ
TltTcSYM, fixed µ
Legend
Global minimum
1st meta- stable
?, f parameterize anisotropies in µ
39
N4 Phase Diagrams
40
Outline
  • Two components BCS theory and beyond
  • Two components ultracold atoms
  • Classifying mean-field states WT identities
  • Mean-field global phase diagrams
  • Experimental signatures
  • RG and fluctuations (preliminary)

41
State Selective Imaging
BEC
BCS
Less Imbalance
More Imbalance
Science 311, 492 (2006)
42
Phase-contrast Imaging
PRL 97, 030401 (2006)
43
RF Spectroscopy
3
RF
1
2
Science 305, 1128 (2004)
BEC
BCS
Unitary
Higher T
Lower T
44
RF Spectroscopy
3
RF
1
2
Science 305, 1128 (2004)
BEC
BCS
Unitary
Higher T
Normal
Lower T
45
RF Spectroscopy
3
RF
1
2
Science 305, 1128 (2004)
BEC
BCS
Unitary
Higher T
Normal
Paired
Lower T
46
Outline
  • Two components BCS theory and beyond
  • Two components ultracold atoms
  • Classifying mean-field states WT identities
  • Mean-field global phase diagrams
  • Experimental signatures
  • RG and fluctuations (preliminary)

47
U(N) Symmetric Superfluid Transition
Ginzburg-Landau Action
Fields
Symmetric
Symmetry Breaking
48
RG in e-Expansion
49
Fixed Points and Stability
  • Three couplings, eight fixed points
  • For N3
  • Eight physical FP
  • One IR stable FP with ?M2, ?I, ?H e
  • For Ngt3
  • 4 physical FP (4 with imaginary couplings)
  • No IR stable FP

50
Conclusions
  • Superfluidity drives magnetization for
    multicomponent fermions
  • Classification of microscopic pairing
    wavefunctions via Ward-Takahashi identities
  • Rich phase diagrams first/second order
    transitions, metastability/phase separation,
    multicritical

arXiv0705.0347
51
State Selective Imaging
Less Imbalance
Majority/Minority/Difference
Majority Species
Minority Species
Difference
Science 311, 503 (2006)
More Imbalance
52
Three or more components
  • Each component individually conserved
  • N densities na, N(N-1)/2 scattering lengths aaß
  • Caveats Nuclear spin flips, inelastic losses

Elastic collisions
N2
Dipole-dipole interaction
N3
Write a Comment
User Comments (0)
About PowerShow.com